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 Statistical Power and Sample Size        

       We began the previous chapter by citing statistics from the What Works 
Clearinghouse (WWC) about the enormous number of completed empiri-
cal evaluations of educational interventions that were unable to support 
causal inference. For example, we noted that among 301 evaluations of the 
effectiveness of interventions in elementary mathematics, 97 %  of the stud-
ies reviewed could not support a causal conclusion. The most common 
reason was that the authors of the studies were unable to defend the 
assumption that participants who had been assigned to the treatment and 
control conditions were  equal in expectation  before the intervention began. 

 However, even in studies that meet this condition — for example, because 
the investigator has assigned members of the analytic sample randomly to 
treatment and control groups — the effort can be stymied by a sample of 
inadequate size. If you conduct otherwise well-designed experimental 
research in a too-small sample of participants, you may estimate a positive 
impact for your intervention, but be unable to reject the null hypothesis 
that its effect is zero, in the population. For example, the 3 %  of studies of 
elementary-mathematics interventions that met the WWC standards for 
supporting causal inferences included one evaluation of the causal impact 
of a curriculum entitled Progress in Mathematics 2006.   1  Had the sample 
size of this study been larger and all else remained the same, the modest 
positive results of the evaluation would have been statistically signifi cant. 

1.    http://ies.ed.gov/ncee/wwc/reports/elementary_math/promath_06/  , accessed May 29, 
2009. 

http://ies.ed.gov/ncee/wwc/reports/elementary_math/promath_06/
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 Thus, early in the process of planning research, it makes good sense to 
decide how many participants you need to include in your sample in order 
to have a decent chance of detecting any effect that may indeed be pres-
ent in the population. To make this sample size decision sensibly, you 
need to conduct what is known as a  statistical power analysis  as part of your 
research planning process. In this chapter, we explain how to do this. 
As you will see, an important guiding principle is that you can always 
manipulate the important facets of your research design, such as sample 
size, to create a stronger empirical “magnifying glass” for your work. With 
a more powerful magnifying glass, you can always see fi ner detail. 

 We devote this chapter and the next to explaining how to conduct 
statistical power analyses because we believe that many social-science 
investigators have been unaware of the true requirements for sample size 
in effective research design. As a result, much empirical research in edu-
cation and the social sciences in the past has been underpowered. In this 
chapter, we describe the link between statistical power and sample size, 
and establish basic guidelines for fi guring out the values that both should 
take on in high-quality research. We begin by defi ning the concept of 
 statistical power , connecting it to the process of statistical inference with 
which you are already familiar. Then, we describe the link between power 
and sample size, and between power and other critical features of the 
research design. We do this all in the context of the “gold standard” 
research design for causal research — an experiment in which participants 
have been randomized individually to either a treatment or a control con-
dition. Then, in the following chapter, we extend our presentation to 
include the more complex case in which groups of individuals — such as 
classrooms or schools — are sampled and randomly assigned to experimental 
conditions.     

   Statistical Power      

   Reviewing the Process of Statistical Inference   

 In introducing the concept of statistical power, we rely again on the example 
of the New York Scholarship Program (NYSP), which we introduced in 
Chapter 4. As we described earlier, the NYSP is an example of a two-
group experiment in which individual participants were randomly 
assigned to either a treatment or a control group. Members of the exper-
imental group received a private-school tuition voucher and members of 
the control groups did not. To facilitate our explanation of the critical 
statistical concepts in this chapter, we begin by narrowing our focus and 



84 Methods Matter

addressing the implicit NYSP research question using the simplest appro-
priate analytic technique available to the empirical researcher. This is a 
two-group  t -test of the null hypothesis that there is no difference, in 
the population, between the average academic achievement of African-
American children in the experimental (voucher) and control (no voucher) 
conditions. 

 To simplify our explanation of the new statistical concepts in this chapter, 
we base our presentation on the application of a  one-sided t -test. This 
means that — in our introduction of the concept of statistical power — we 
test the null hypothesis that the average academic achievement of treated 
children is equal to the average achievement of untreated children versus 
an  alternative  hypothesis that their achievement is  greater  than that of con-
trol children, in the population. This is a strictly  pedagogic  decision on our 
part and was made to simplify our technical presentation. It contrasts 
with our earlier  substantive  decision to rely on a two-sided  t -test in our 
detailed presentation of the actual analyses and fi ndings from the NYSP 
project in Chapter 4. There, we assumed that, if the null hypothesis were 
rejected, the average achievement of children in the population who were 
offered vouchers could be either greater than, or less than, the average 
achievement of children not offered vouchers. Generally, in conducting 
research, a one-sided test should only be used in circumstances in which 
you can defend a strong prior belief that, if the treatment did have an 
effect on the outcome of interest, you would know with certainty what the 
direction of the difference in outcomes would be. This is rarely true in 
practice, and we do not believe it would be true in the case of empirical 
analyses of the NYSP data. On the other hand, as we discuss in Chapter 8, 
an example in which we believe a one-sided test would be appropriate 
concerns the impact of college scholarship aid on the decisions of high-
school seniors to enroll in college. Since scholarship aid reduces the cost 
of college enrollment, it seems compelling to assume that, if scholarships 
did have an impact on the percentage of high-school seniors who enrolled 
in college, that effect would indeed be positive. 

 Fortunately, whether you choose a directional or a nondirectional alter-
native for your hypothesis testing, the technical concepts and connections 
that we introduce in this chapter — and, in particular, the concept of statis-
tical power itself — remain unchanged. Later in the chapter, we describe 
how critical features of the research design, the measurement of the vari-
ables, and the choice of a particular data-analytic approach affect the 
statistical power in any particular experiment. At that point, we recon-
sider the decision to adopt a directional versus a nondirectional alternative 
hypothesis and comment on how it impacts the magnitude of the statistical 
power. 
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 First, it is useful to recall the steps in the process of statistical inference 
that we made use of in the top panel of Table 4.1. There, to test the null 
hypothesis that students who were offered a NYSP voucher had academic 
achievement three years later that was no different from students who 
lost out in the voucher lottery, we fi rst adopted a suitable   α -level  (of 0.05) 
to fi x the Type I error of our test at 5 % . Second, we computed the value 
of an observed  t -statistic, obtaining a value of 2.911, using the following 
formula:
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 where subscripts  V  and  NV  are intended to distinguish the voucher and 
no-voucher groups, and  s 2   and  n  refer to the pooled variance of post-test 
academic achievement and the number of African-American children in 
the respective groups. Third, based on our adopted  α -level, we deter-
mined a critical value of the  t -statistic under the null hypothesis at the 
appropriate degrees of freedom (here, 519).   2  This critical value, in the 
case of a one-sided test favoring the experimental voucher group, is 1.648. 
Fourth, because the magnitude of the observed  t -statistic (2.911) exceeded 
the critical value (1.648), we rejected the null hypothesis that African-
American children with, and without, vouchers performed identically in 
academic achievement, on average, in the population. Hence, we con-
cluded — because our research design was a randomized experiment — that 
voucher receipt caused the observed difference of about 5 points in 
academic achievement between members of the treatment and control 
groups.   3   

2.  There were a total of 521 children in the sample. 
3.  You can also proceed by referring to the  p -value associated with the statistic of interest.  

This estimates the probability that you could have obtained your single empirically 
obtained estimate of the parameter of interest, or something more extreme than it, by 
an accident of sampling from a population in which the value of the parameter was 
0 — that is, from a population in which the null hypothesis was true. In the  t -test con-
ducted here, for instance, the  p -value was 0.004 (Table 4.1, upper panel), meaning it 
was unlikely that we could have obtained our single empirically obtained average treat-
ment/control difference of 4.899 and its companion  t -statistic of 2.911, or something 
larger, by an accident of sampling from a “null” population. So, we conclude that, in 
the reality of the actual experiment, we were probably not sampling from a null popula-
tion, but from an alternative population in which there was indeed a relationship 
between academic achievement and voucher receipt. 
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 Notice how the construction of the observed  t -statistic, which we defi ned 
in Equation 6.1, is conceptually appealing. Its numerator is equal to the 
sample mean difference in academic achievement between the voucher 
and no-voucher groups. Its denominator is simply the standard error of 
the difference in means between the groups — that is, the standard error 
of the quantity that sits in the numerator.   4  So, the observed  t -statistic is 
just the sample mean difference between the voucher and no-voucher 
groups expressed in appropriate standard error units. More compellingly, 
provided that the original achievement scores are normally distributed, 
theoretical work in statistics shows that all such statistics formed in this 
way have  t -distributions. So, we were able to use our existing knowledge of 
the  t -distribution to determine a critical value for comparison with the 
observed test statistic, in order to carry through on the test .

 As you know, through a process of sampling from the underlying popu-
lation, the observed  t -statistic in which we are interested — that is, the 
“2.911” obtained in our NYSP analyses — derives its value implicitly from 
an underlying and critically important parameter representing the aver-
age difference in academic achievement between African-American 
children with, and without, vouchers in the population. We write this 
important population difference in means as ( µ V  – µ NV  ), where subscripts 
 V  and  NV  refer to the experimental “voucher” and control “no-voucher” 
groups, respectively and, in what follows, for convenience, we refer to it as 
  ∆ µ.  If the mean difference in the population   ∆ µ  were large, the corre-
sponding difference in mean academic achievement that we would obtain 
by drawing samples from that population — and the corresponding value 
of the accompanying observed  t -statistic — would also tend to be large, 
except that the idiosyncrasies of random sampling might occasionally toss 
up some radically different value than we had anticipated. Conversely, if 
the important population mean difference   ∆ µ  were actually equal to zero 
in the population, then any corresponding sample mean difference 
observed in the sample — and, consequently, the value of the correspond-
ing observed  t -statistic — would tend to be close to zero, except for the 
idiosyncrasies of sampling. 

 The complete formal logic of hypothesis testing is actually a little more 
complex than intimated up to this point, and it is from this added com-
plexity that the notion of statistical power derives. When we conduct a 
hypothesis test, we actually contrast what we have learned from the empir-
ical data with what we might anticipate under a  pair  of hypothetical 
settings. The fi rst of these settings we have commented upon earlier. It is 

4.  Under the assumption of homoscedasticity for the population residual variance. 
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described by the null hypothesis  H 0  , and under it we imagine there exists 
a hypothetical “null” population in which the important population mean-
difference parameter   ∆ µ  is actually equal to zero (i.e., we stipulate that  H 0  : 
  ∆ µ  = 0). The second, and equally important, setting is provided by an 
alternative hypothesis  H A  , in which we establish a second hypothetical 
population where the value of the important population mean-difference 
parameter is  not 0 , but equal to some non-0 value of magnitude   δ   (i.e., we 
will stipulate that   ∆ µ  =   δ ,  under the alternative hypothesis  H A  ). In quanti-
tative research, we are usually interested in rejecting the null hypothesis 
in favor of the alternative, and then interpreting   δ   substantively. 

 Classical hypothesis testing simply contrasts the vicissitudes of the 
empirical setting, as encapsulated in the single empirically obtained value 
of the  t observed   statistic, with the set of values that the test statistic could 
potentially take on if we were to sample repeatedly and independently 
from populations in which these null and alternative hypotheses are true, 
respectively. Of course, we expect that values of  t observed   obtained in repeated 
resamplings would be scattered randomly and naturally by the idiosyncra-
sies of sampling. But, we anticipate that they would be scattered around 
the value  zero  if we were sampling from the null population, and around 
some non-zero value that depends on   δ   if we were sampling from the 
alternative population.   5  Then, if we found that the actual value of  t observed   
obtained in our actual experiment was close to zero, and fell within a 
range of values that we might naturally anticipate in the “idiosyncratic 
scattering from the null” case, we would prefer the “ It came from H 0  ” expla-
nation and consequently accept that   ∆ µ  =  0 . If our single empirically 
obtained value of  t observed   was large, on the other hand, and looked more 
like a value that we might have gotten in an “idiosyncratic scattering from 
the alternative” case, then we will prefer the “ It came from H A  ” explanation 
and accept that   ∆ µ  =   δ  . Picking a sensible   α  -level for our test is how we 
choose between these two potential explanations. 

 We summarize these aspects of the hypothesis-testing process in 
Figure   6.1  . In the top panel, under the symmetric hill-shaped “envelope,” 
we represent the distribution of the values that a  t -statistic could poten-
tially take on, in random resampling from a “null” population in which 

5.  Unfortunately for the pedagogy of our example, the “some non-0 value” to which we 
refer in this sentence is not   δ   itself, but a linear function of it. This is because, under the 
alternative hypothesis, the observed  t -statistic has a non-central  t -distribution whose 

 population mean is equal to   δ  multiplied by a constant whose value is  
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 where  υ  represents the degrees of freedom of the distribution and  ( )Γ    is the gamma 
function. 
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the population mean-difference parameter   ∆ µ  was equal to zero. Although 
 zero  may not be the magnitude that we ultimately hope population out-
come mean difference   ∆ µ  will have in our actual experiment (in fact, we 
usually hope that it is not zero), this idea of sampling repeatedly from a 
“null population” provides us with a useful baseline for subsequent com-
parison. Conceptually, the curve in the top panel represents something 
akin to a histogram of all the idiosyncratic values that  t observed   could possi-
bly take on if we were to resample an infi nite number of times from a 
population in which the population outcome mean difference between 
treatment and control conditions,   ∆ µ , was zero. As in any histogram, the 
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     Figure 6.1    Distributions of the observed  t -statistic ( t observed  ) under competing null ( H 0  ) 
and alternative ( H A  ) hypotheses, showing the Type I error (  α  ), Type II error (  β  ), and 
placement of the critical value of the  t -statistic ( t critical  ), for a one-tailed test of population 
outcome mean differences between a treatment and a control group.    
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horizontal axis represents the possible values that  t observed   could attain — 
actually, these values range from − ∞  to  +  ∞ . The vertical axis represents the 
“frequency” with which each value has occurred during the resampling 
process. However, we are dealing with infi nite resampling and a statistic 
that can take on values ranging continuously between plus and minus 
infi nity. Consequently, we have drawn the exhibit as the envelope of a 
 probability density function  (or pdf) in which the histogram has been re scaled 
so that the total area under the envelope is equal to 1. Areas beneath the 
envelope represent the  probabilities  with which particular  ranges  of values 
of  t observed   would occur in infi nite resampling from a null population. For 
instance, the probability that  t observed   will take on  any  value at all is obviously 
1, a value equal to the total area beneath the pdf.   6  Similarly, because the 
pdf is symmetric and centered on zero, there is a probability of exactly 
one half — a 50 %  chance — that a value of  t observed   sampled at random from 
the null population will be larger than zero, or smaller than zero.   7   

 In the bottom panel in Figure   6.1  , we display the situation that would 
occur under the competing alternative hypothesis,  H A :  ∆ µ  =   δ  . The graphic 
is essentially identical to that displayed under  H 0  , but we have shifted the 
pdf of  t observed   to the right by an amount that depends on   δ   — the value we 
would anticipate for the population outcome mean difference between 
treatment and control groups if  H A   were true.   8  Again, the displaced pdf 
represents the distribution of all the possible values of  t observed   that could 
be obtained if samples were drawn repeatedly and randomly from the 
alternative population. 

 To complete our test, we rely on a decision rule that derives from our 
decision to set the Type I error of our test at 5 % . From this decision, we 
can derive a  critical value  against which to compare the value of the 
observed test statistic. We do this by determining the value that  t observed   
would have to take on in order to split the null distribution of  t observed   in the 
top panel of Figure   6.1   vertically into two parts, with 5 %  percent of the 
area beneath its envelope falling to the right of the split and 95 %  falling 
to the left.   9  In the fi gure, we indicate the place at which this split occurs 

6.  The area beneath the  t -distribution is fi nite, and equal to 1, because its tails asymptote 
to zero. 

7.  Not all distributions of test statistics are symmetric and zero at the center. However, the 
logic of our argument does not depend for its veracity on the particular shape of the 
pdf we have chosen to display. All that is required is that the pdf of the test statistic, 
under  H 0  , be known. Consequently, our argument applies equally well to cases in which 
distributions are asymmetric (as with the F and  χ 2 distributions). 

8.  Again, under the alternative hypothesis, the pdf of the observed  t -statistic is not 
centered on the value of   δ   itself, but on a value proportional to it. See footnote 5. 

9.  Recall that this is a one-sided test. 
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by drawing a dashed vertical line. The place at which the vertical dashed 
line intersects the horizontal axis provides the required critical value of 
the test statistic  t critical   that we will use in our hypothesis test. Our decision 
is then straightforward. If  t observed   is greater than  t critical  , then we conclude 
that it is probably too extreme to have come legitimately from the null 
distribution. Consequently, we reject  H 0   in favor of  H A  , and conclude that 
parameter   ∆ µ  is equal to   δ  , not zero, in the population from which we 
have sampled. On the other hand, if  t observed   is less than  t critical  , we conclude 
that our single empirical value of  t observed   was probably sampled from a null 
population Consequently, we would not reject  H 0   in favor of  H A  . In other 
words, by choosing a particular   α  -level (5 % , say) to fi x the level of the 
Type I error, and combining this with our theoretical knowledge of the 
shape of the pdf of the  t -statistic under the null hypothesis, we can carry 
out the desired test. It is the choice of the Type I error that provides us 
with the criterion that we need to make the testing decision. 

 Now focus on the lower second panel in Figure   6.1  , which is aligned 
beneath the fi rst. As we have noted, this lower panel illustrates the “alter-
native” side of the hypothesis testing situation. In it, we display the pdf of 
all possible values that an observed  t -statistic could take on in repeated 
resampling from a population in which the alternative hypothesis was 
true, and parameter   ∆ µ  had a non-zero value of   δ   . Of course, because of 
sampling variation, it is entirely possible that, in some proportion of resa-
mplings,  t observed   will take on very small values, perhaps even values less 
than  t critical   — values that we typically associate with sampling from a null 
population — even though the alternative hypothesis is actually true. If 
this were to happen in practice, and we were to base our decision on 
an artifi cially small empirically obtained value, we would declare the null 
hypothesis true. In this case, we would have committed another kind of 
mistake — called a  Type II error . Now, we would end up falsely accepting the 
null hypothesis even though the alternative was, in fact, true. The proba-
bility that  t observed   may be idiosyncratically less than  t critical  , even when the 
alternative hypothesis is true, is represented by the shaded area under the 
“alternative” probability density function to the left of  t critical  . Just as symbol 
  α   is used to represent the magnitude of Type I error,   β   is the symbol used 
to represent the probability of a Type II error. 

 Finally, notice the horizontal separation of the centers of the pdfs, 
under the competing null and alternative hypotheses,  H 0   and  H A  , in 
Figure   6.1  . This separation refl ects the difference in the potential 
values of   ∆  µ  , under the alternative (  ∆  µ = δ  ) and null hypotheses (  ∆  µ = 0).   10  

10.  Again, the horizontal distance between the centers of the  H 0   and  H A   pdfs is not equal 
to   δ  , but is proportional to it. See footnote 5. 
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Methodologists refer to the difference between the values of   ∆ µ  under  H 0   
and  H A   — that is,   δ   or a sensible rescaling of it — as the  effect size.  If you con-
duct a statistical test and reject  H 0   in favor of  H A  , you can conclude that 
the important population outcome mean-difference parameter has mag-
nitude   δ  , rather than zero. In other words, you will be ready to declare 
that you have detected an effect of the treatment. In analyses for our 
NYSP experiment, for instance, after rejecting  H 0   in favor of  H A  , we 
conclude that   ∆  µ   is certainly not zero, and we estimate its value under the 
alternative hypothesis — that is,   δ   — by the sample mean difference in the 
outcome between members of the treatment and control groups. 

 Under this defi nition, we could regard the effect size of the voucher 
treatment as simply equaling our best estimate of   δ  , and it would be mea-
sured in the same units as the outcome — student achievement, in the 
NYSP experiment. Of course, this scaling is arbitrary, because it is deter-
mined by the metric in which the outcome was measured. Two investigators 
could then end up with different values for the effect size if they chose to 
measure the same outcome on the same children using one achievement 
test rather than another. So, for greater uniformity and generality, effect 
size is usually redefi ned so that it can be communicated in standard devia-
tion units. Thus, for each different test and test statistic, the mathematical 
features of the rescaling differ, but the consequences are the same. Once 
the rescaling is complete, investigators can refer to the effects of their 
experiments using statements like “a difference of a half standard devia-
tion,” “a quarter standard deviation difference,” and so on. These kinds 
of statements can be understood by their colleagues and by remote audi-
ences, regardless of the specifi c metric of the outcome measurement itself. 

 Based on these ideas, to facilitate communication, researchers have 
tended to adopt the set of loose standards that Jacob Cohen (1988) pro-
posed for describing the magnitudes of effect sizes. Cohen proposed that 
in comparing an average difference in outcome between members of a 
treatment and a control group, we should regard a difference of eight-
tenths (0.8) of a standard deviation a “large” effect, a difference of one-half 
(0.5) of a standard deviation a “moderate” effect, and two-tenths (0.2) of 
a standard deviation a “small” effect size.   11  For instance, in the case of the 
NYSP evaluation, recall that the difference in academic achievement 

11.  Effect size can also be defi ned in terms of the  correlation  between outcome and predictor. 
In the NYSP evaluation, an effect size defi ned in this way would be the sample correla-
tion between the academic achievement outcome and the dichotomous  VOUCHER  
predictor, for the sample of African-American children. This correlation has a value 
of 0.127. When effect sizes are defi ned as correlations, a coeffi cient of magnitude 0.10 
is regarded as a “small” effect size, 0.25 as a “medium” effect size, and 0.37 as a “large” 
effect size (Cohen, 1988, Table 2.2.1, p. 22). 
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between African-American children in the voucher and no-voucher 
conditions at the end of third grade was 4.899 points (Table 4.1, top 
panel). The standard deviation of academic achievement for these chil-
dren was 19.209, and so we would say that effect size in the NYSP 
evaluation — which is then about a quarter of a standard deviation — was 
“small.”   12  In our experiences, effect sizes of even the most successful 
interventions in education and the social sciences tend to be “small,” 
when calibrated in Cohen’s metric.     

   Defi ning Statistical Power   

 When conducting any hypothesis test, you have only two decisions to 
make. You can either reject  H 0   because your obtained value of  t observed   is 
larger than the value of  t critical  , or you can fail to reject it because  t observed   is 
smaller than  t critical  . However, whichever of these two decisions you make, 
you can either be correct or you could have made a mistake. So, there is a 
“two-by-two” alignment of the testing decision with its consequences that 
leads to four possible decision scenarios. To two of these, by virtue of our 
defi nitions of Type I and Type II error, we can attach probabilities of 
occurrence. We summarize these four possible decision scenarios, and 
their associated decision probabilities, in the simplifi ed graphical cross-
tabulation in Figure   6.2  .  

 In the fi gure, we have redisplayed the critical features of the  H 0   and  H A   
pdfs that we displayed in Figure   6.1  , along with the probabilities associ-
ated with their splitting vertically into parts by the placement of  t critical   
(again represented by the vertical dashed line). The fi rst row of the graph-
ical cross-tabulation summarizes the distribution of  t observed   when  H 0   is true; 
the second row summarizes its distribution when  H A   is true. We comment 
briefl y on each decision scenario below, beginning in the fi rst row.    

   When H 0  Is True and  ∆  µ  Is Equal to Zero (First Row)   

         • Right-hand cell.  Even though the null hypothesis is actually true in 
this row and there are no differences between the treatment and 
control group outcome means, in the population, you may fi nd 
that your single empirically obtained value of  t observed   is idiosyncrati-
cally larger than the value of  t critical   simply by virtue of an accident 
of sampling. Then, you will reject  H 0   by mistake and declare that 

12.  Some argue that effect size is best scaled in terms of the standard deviation of the 
outcome for participants in the control condition only. In the NYSP evaluation, this 
would have led to an effect size of (4.899/17.172), or 0.285. 



Statistical Power and Sample Size 93

  ∆  µ   is equal to   δ   incorrectly. In this case, you have made a Type I 
error, because you have falsely rejected your null hypothesis when 
it was correct. Such a decision scenario would occur if your actual 
experiment was one of those unfortunate occurrences in which a 
sample drawn from a truly null population generated a large value 
of  t observed   by an idiosyncratic accident of random sampling. However, 
because under this scenario  H 0   is actually correct, the probability 
that you will make such a decision is equal to the area under  H 0  ’s 
pdf to the right of  t critical  , which is of course the level of Type I error 
  α   that you yourself have picked in advance of the test. Thus, you 
have direct control over the Type I error probability, and you have 
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     Figure 6.2    Four-way decision scenario, summarizing the probabilities of not rejecting  H 0   
(1st column) or rejecting  H 0   (2nd column) when it is either True (1st row) or False (2nd 
row), showing the Type I error (  α  ), Type II error (  β  ), and placement of the critical value 
of the  t -statistic ( t critical  ), for a one-tailed test of population outcome mean differences 
between a treatment and a control group.    
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an incentive to limit it by choosing a suitably small   α  -level, such as 
0.05, for your test.  
      • Left-hand cell . On the other hand, you may fi nd that your single 
empirically obtained value of  t observed   is appropriately smaller than 
your tabled value of  t critical  , you will correctly fail to reject  H 0   ,  and 
you will be right when you declare that   ∆  µ   is equal to zero .  In this 
decision scenario, you have drawn a well-behaved small value of 
 t observed   from the null distribution, and it is appropriately less 
than  t critical  . The probability that this decision scenario will occur 
is simply the area under  H 0  ’s pdf to the left of  t critical  , or the  comple-
ment  of your self-selected Type I error, and is therefore equal to 
(1 –   α  ).         

   When H A  Is True and  ∆  µ  Is Equal to  δ  (Second Row)   

         • Left-hand cell . In this scenario, even though the alternative hypoth-
esis is true and there are indeed differences between the treatment 
and control group outcome means, in the population, you may 
fi nd that your single empirically obtained value of  t observed   is idiosyn-
cratically smaller than the value of  t critical  , again by an accident of 
sampling, and you will fail to reject  H 0   even though it is false. Thus, 
you would incorrectly declare that   ∆  µ   is equal to zero. This would 
occur if your experiment was one of those occasions when a 
random sample from the alternative population happens to toss 
up an idiosyncratically small value of  t observed  . Consequently, 
although  H A   is actually true, your idiosyncratically small obtained 
value of  t observed   leads you to conclude that the sample was drawn 
from the null population. You have now made a Type II error. The 
probability that this decision scenario will occur is given by the 
area under  H A  ’s pdf to the left of the value of  t critical  . It is called the 
Type II error of the decision-making process, and we represent it 
by the symbol   β  . It is again a probability, just like   α  .  
      • Right-hand cell . Finally, you may fi nd that your single empirically 
obtained value of  t observed   is appropriately larger than the tabled 
value of  t critical  , and you will correctly reject  H 0  . In this scenario, 
your alternative hypothesis is true and you will be right when you 
declare that   ∆  µ   is equal to   δ  . The probability that this decision 
scenario will occur is equal to the area under  H A  ’s pdf to the right 
of  t critical   — it is the complement of Type II error, or (1 –   β  ).     

 This two-way cross-tabulation of the decision scenarios illustrates 
that the magnitudes of the several decision probabilities are interrelated. 
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To appreciate this fully, recall that, once the pdf of the test statistic has 
been specifi ed under  H 0  , the value of  t critical   depends only on your selec-
tion of the   α  -level. So, if you were willing to entertain a larger Type I 
error, perhaps as high as 0.10, then your corresponding value of  t critical   
would shrink, so that 10 %  of the area beneath  H 0  ’s pdf can now become 
entrapped to its right. With your new willingness to entertain this larger 
Type I error, you would fi nd it easier to reject  H 0   because the single empir-
ically obtained value of your observed test statistic would be more likely to 
exceed the now smaller value of  t critical  . This means that, if you can tolerate 
increased Type I error, you can more easily reject  H 0   and more easily 
claim detection of a non-zero effect in the population. Of course, in 
enhancing your chances of claiming such a non-zero effect, you have 
increased the probability of Type I error — that is, you are now more likely 
to reject  H 0   even when it is true! At the same time, shifting  t critical   to a 
smaller value has implicitly moved the vertical splitting of  H A  ’s pdf to the 
left in Figure   6.2  , and thereby reduced the value of the Type II error   β  . 
So, you are now more likely to accept  H A   when it is true. This intimate —
 and inverse — connection between the magnitudes of the Type I and II 
errors is a central fact of statistical life. As you decide to make one type of 
error  less  likely, you force the other one to become  more  likely, and vice 
versa. So, you can correctly regard hypothesis testing as a trade-off between 
the probabilities of two competing types of error. 

 More importantly, the decision probability featured in the right-hand 
cell of the lower second row in Figure   6.2  , which is of magnitude (1 –   β  ), 
is a central and important commodity in our empirical work. It is the  prob-
ability of rejecting H 0  when it is false . Or, alternatively, it is the probability of 
accepting the alternative hypothesis when it is true. This is a highly pre-
ferred end result for most research — the rejection of the null hypothesis in 
favor of the alternative, when the alternative is true. For example, in 
designing the NYSP experiment, investigators were hoping to reject the 
null hypothesis of no causal connection between voucher receipt and stu-
dent achievement in favor of an alternative hypothesis that stipulated 
voucher receipt had a causal effect on student achievement. This impor-
tant quantity is defi ned as the  statistical power  of the study and, as you can 
see from Figure   6.2  , it is simply the complement of the Type II error. This 
means that, knowing the pdfs of our test statistics — such as the  t -statistic —
 under the null and alternative hypotheses, and being willing to set the 
Type I error level to some sensible value, means that we can actually esti-
mate a value for the statistical power. This can be very useful both during 
the design of the research and also after the research has been completed. 
We follow up on these ideas in the section that follows.       
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   Factors Affecting Statistical Power   

 Given this explanation, statistical power can be estimated prospectively 
for any research design, provided that you are willing to stipulate four 
things. First, you must be willing to anticipate the effect size that you hope 
to detect (e.g., Do you expect to be detecting a small, medium, or large 
effect?). Second, you must pick the type of statistical analysis you will 
eventually conduct (e.g., Will you use a  t -test of differences in means, or 
more sophisticated methods of data analysis?). Third, you must pick an 
  α  -level for your future statistical inference (Are you happy with the 
0.05 level?). Fourth, you must decide on the number of participants you 
want to include in your sample (Can you afford to recruit 200, 300, 400, 
or more participants?). The reason that these four decisions determine 
the statistical power of your prospective analysis is as follows. By choosing 
the method of statistical analysis, you identify the statistic that will be 
used to test your hypotheses. Knowing the test statistic and the prospec-
tive sample size determines the shape of the test statistic’s pdf under  H 0  . 
Choice of the effect size then determines the pdf of the test statistic under 
 H A   (typically, by displacing the pdf to the right).   13  Finally, overlaying the 
  α  -level on the test statistic’s pdf under  H 0   then fi xes the critical value 
of the test statistic, which consequently determines the statistical power. 
We call this a  statistical power analysis . 

 Often of greater interest, if you are willing to anticipate the effect size, 
specify a type of analysis, pick an   α  -level, and decide on the statistical 
power you want, you can fi gure out the sample size that will permit you to 
reach your analytic objectives. The actual computations underlying such 
statistical power analyses are complex, and they make use of theoretical 
knowledge of the mathematical shapes of the pdfs of the different test 
statistics under the null and alternative hypotheses, and of integral calcu-
lus. Consequently, we do not describe them here. But they are available 
for reference in standard statistical texts, and are most easily carried out 
by dedicated computer software, much of which is now available free on 
the Internet.   14  Instead, our purpose here is to give you a ballpark sense of 
the kinds of sample sizes that are needed for successful experimental 
research design in education and the social sciences, and the levels of 

13.  Depending on the type of analysis, the test statistic’s pdf under  H A   may also have a 
different shape from its pdf under  H 0  . 

14.  All the power analyses in this chapter were conducted using the G ∗ Power freeware, 
v2.0,  GPOWER: A-Priori ,  Post-Hoc and Compromise Power Analyses for MS-DOS , Dept. of 
Psychology, Bonn University, Germany,   http://www.psycho.uni-duesseldorf.de/aap/
projects/gpower/  . 

http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/
http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/
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statistical power that they typically provide. In addition, we hope to guide 
you toward the kinds of design decisions that will enable you to achieve 
your objectives as an investigator of cause and effect. 

 To provide you with some intuition about the sizes of sample that are 
required typically in a successful two-group experiment, we now present 
estimates of statistical power for an experiment in which we assign a 
sample of participants randomly and individually to either a treatment or 
a control condition, so that groups of equal size are formed. We again 
assume that a one-sided  t -test will eventually be used to test a null hypoth-
esis of no group differences in the outcome mean, in the population. 
For this empirical set-up, in Figure   6.3  , we plot the obtained values of 
statistical power (vertical axis) at different values of the total sample size 
(the total number of participants in the treatment and control groups 
combined, on the horizontal axis). We do this for both small effect sizes 
( ES  = 0.2, lower pair of curves) and medium effect sizes ( ES  = 0.5, upper 
pair of curves), at   α  -levels of 0.05 (solid lines) and 0.10 (dashed lines), 
respectively. We have not provided plots for the large effect size ( ES  = 0.8) 
condition because such effect sizes occur rarely in experimental research 
in education and the social sciences. You can replicate these plots by 
downloading standard statistical power analysis software from the Internet 
and inserting these values we have provided for effect size and Type I 
error (see footnote 14).  

 Inspecting the fi gure, you can discern three important relationships 
between statistical power and the other quantities involved. First, notice 
that statistical power is always greater when you adopt a more liberal 
  α  -level in your statistical testing. In Figure   6.3  , at any pairing of effect and 
sample size, power is always greater when the   α  -level is 0.10 rather than 
0.05. For instance, if you want to detect a small effect size ( ES  = 0.2) with 
a total sample size of 300, then choosing an   α  -level of 0.10 rather than 
0.05 increases your statistical power from approximately 0.53 to 0.67, an 
improvement of more than 25 % . Our earlier description of the nature of 
statistical power provides an explanation for why this occurs. Returning 
to Figure   6.2   and focusing on the fi rst row, you will see that it is the choice 
of   α  -level that splits the area beneath the test statistic’s pdf under  H 0   and 
determines the test statistic’s critical value  t critical  . So, if you deliberately 
increase the value of   α  , from 0.05 to 0.10. say, the value of  t critical   must 
“shift to the left,” so that a larger area (10 % ) can be entrapped under the 
 H 0   pdf to its right. But, if  t critical   is shifted, any areas entrapped beneath the 
alternative probability density function in the second row of the fi gure 
must be affected. Specifi cally, the area to the left of  t critical   under the  H A   pdf 
will be reduced, decreasing the value of the Type II error   β  , and increas-
ing its complement, the statistical power. 



1.00

a = 0.10

a = 0.10

a = 0.05

a = 0.05

0.90

0.80

0.70

ES
=

0.5

ES
=

0.2

0.60

0.50

0.40

0.30

0.20

0.10

S
ta

ti
st

ic
al

 P
o

w
er

Total Sample Size

0 100 200 300 400 500 600

     Figure 6.3    Statistical power as a function of total sample size, effect size (0.2 versus 0.5), 
and   α  -level (0.05 versus 0.10), for a one-tailed test of population outcome mean 
differences between a treatment and a control group.    
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 The second important relationship evident in our fi gure is that, all else 
remaining equal, you will always have more power to detect a larger effect. 
In Figure   6.3  , with a total sample size of 100 participants randomized to 
treatment conditions, say, and an   α  -level of 0.05, you have a power of just 
over 0.25 to detect a small effect ( ES  = 0.2) and a power of almost 0.80 to 
detect a medium effect ( ES  = 0.5). Again, the reason for this link between 
effect size and power can be deduced from our decision-scenario descrip-
tion in Figure   6.2  . As we have noted already, the effect size determines the 
horizontal separation of the test statistic’s pdfs under  H 0   and  H A  . So, if a 
larger effect size is accommodated, the  H 0   and  H A   pdfs must be more 
widely separated along the horizontal axis. But, in the fi rst row of the 
fi gure, the center of  H 0  ’s pdf is fi xed at zero (because it represents the 
“null” condition). So, as effect size is increased, the pdf of the test statistic 
under  H A   shifts to the right, in the second row of the fi gure, sliding past 
the location of  t critical  , the placement of which has been fi xed by the earlier 
choice of   α  -level under the  H 0   pdf. Consequently, the area beneath the 
alternative distribution to the right of  t critical   must rise, and statistical power 
is again increased. 

 Third, and most important, statistical power is always greater when the 
total number of participants included in the experiment is larger, all else 
being equal. This is quite a dramatic effect, as evidenced by the slopes of 
the power/sample size relationships in Figure   6.3  . Notice, for instance, in 
research to detect a medium effect size ( ES  = 0.5) at an   α  -level of 0.05, 
statistical power can be increased from about 0.55 to more than 0.80 by 
increasing the total sample size from 50 to 100 participants! Although it is 
more diffi cult to understand, the reason for this dependency can again be 
deduced from Figure   6.2  . As sample size increases, the pdf associated 
with any test statistic always becomes slimmer and taller because its values 
enjoy greater precision — and less scatter on repeated sampling — at larger 
sample sizes. However, the location of the center of the distribution 
remains unchanged.   15  So, as the  H 0   and  H A   pdfs in Figure   6.2   slim down 
and become more pointy, there are two important consequences, one for 
each featured pdf. First, in the  H 0   pdf in the fi rst row of the fi gure, the 
location of  t critical   must move to the left — that is, the critical value must get 
smaller — in order to accommodate the fi xed choice of   α  -level adopted for 
the test. (Recall that choice of   α  -level splits the pdf under the null distri-
bution vertically, so that an area equal to the Type I error must fall to the 
right of  t critical  . In a rapidly narrowing distribution, this can only continue 

15.  You can check out this claim using one of the simulations of the distribution of the 
sample mean as a function of sample size available on the Internet. 
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to occur if  t critical   shifts to the left, thereby becoming smaller.) Second, in 
the second row of the fi gure, the corresponding narrowing of the  H A   pdf 
causes the area beneath it to be reapportioned on either side of the now 
fi xed value of  t critical  , with less of the area falling to the left and more falling 
to the right. The shift of the value of  t critical   to the left in the  H 0   pdf in the 
fi rst row and the reapportioning of the area beneath the  H A   pdf in the 
second row both lead to a reduction in the area beneath the  H A   distribu-
tion to the left of  t critical  . Consequently, Type II error   β   is reduced and 
statistical power (1 –   β  ) is increased. We suggest that you download soft-
ware for computing statistical power from the Internet, and try out some 
of these computations for yourself, based on experiments that you think 
you may want to conduct in your own area of substantive interest. 

 One of our own great concerns as social scientists and methodologists 
has always been that many empirical investigators do not have a realistic 
vision of the actual sample sizes that are required to conduct powerful and 
effective research. It is common that researchers underestimate the num-
bers of participants required for empirical success. For instance, if you were 
designing research to estimate the impact of private-school tuition voucher 
receipt on academic achievement, and you suspected that the effect size 
you might detect was small (as in the NYSP experiment), you could set 
your   α  -level to the “usual” 0.05 level of statistical signifi cance and strive 
for moderate power in the region of 0.80. From the plot in Figure   6.3  , 
with these values set, you can see that you require a total sample size of 
about  620 participants  — distributed randomly into equally sized treatment 
and control groups — to have a reasonable hope of successfully detecting 
an effect size of 0.20. If you are unhappy with the idea that there is a 20 %  
chance that you would declare the null hypothesis to be true when in fact 
this is not the case (a Type II error of 0.20), you might want to shoot for a 
power of 0.90. Then, you would need a total of 860 participants in your 
sample. This makes even the NYSP experiment a little underpowered for 
investigating the causal impact of tuition vouchers on African-American 
children, as there are only 521 of these children in the sample. 

 If you need more power for your experiment, or if the predicted effect 
size is smaller than 0.20, or if you want to detect the same treatment 
effect in multiple subgroups (e.g., among different race/ethnicities), then 
your sample must be considerably larger than these targets. Do not 
underestimate the sample size that you will require for your research. 
In underpowered research, you will never know whether you have failed 
to reject the null hypothesis because it is true, or because you simply did 
not have suffi cient power to confi rm the alternative. This problem plagued 
many of the studies of elementary-school mathematics interventions that 
the WWC reviewed.    
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   The Strengths and Limitations of Parametric Tests   

 Keep in mind that the magnitude of the statistical power available in a 
particular investigation also depends on the type of statistical technique 
selected for data analysis. In our earlier examples, to underpin our techni-
cal presentation and form a basis of our “ball-park” estimates of power 
and sample size, we have focused on the simplest possible kind of statisti-
cal analysis that you can conduct in data drawn from a two-group 
experiment — the two-group  t -test. In focusing on the use of this simple 
technique, we intended to provide a “baseline” set of recommendations 
about sample size and statistical power in research design. 

 However, many other statistical techniques are available for analyzing 
data, even for analyzing data from a simple two-group experiment, and 
some of them are more powerful than others. As a guiding principle, 
statistical techniques are more powerful when they incorporate more 
information into the analysis. Other than simply collecting data on more 
participants, there are two straightforward ways to achieve this — you can 
either make stronger assumptions about the data and the statistical model 
upon which the analysis is based, or you can add covariates to the analysis. 
Generally, analytic techniques that make more stringent assumptions are 
more powerful than those with weaker assumptions. The reason is that 
the assumptions themselves constitute a kind of information that is incor-
porated in the analysis. For example, among techniques for comparing 
the average outcomes of a treatment and a control group, the  t -test is 
intrinsically more powerful than the nonparametric Wilcoxon rank test. 
In fact, as a general principle, parametric statistical tests are always more 
powerful than the corresponding nonparametric tests. This is because 
the  t -test, and other traditional parametric tests like those that automati-
cally accompany ordinary least-squares (OLS) regression analysis and the 
analysis of variance, make stronger assumptions about the distribution of 
the outcome in the analyses. The  t -test, for instance, assumes that partici-
pants’ values of the outcome are independently and normally distributed 
with homoscedastic variance in the treatment and control groups.   16  These 
stringent assumptions provide additional information that contributes 
greatly to the power of the analysis. Of course, you don’t get anything for 
nothing. In choosing to use a test like the  t -test over the Wilcoxon rank 
test, you are relying heavily on the validity of these additional parametric 
assumptions. This means that the added assumptions must be valid in 
order for the results of your analysis to be correct. If the assumptions are 

16.  Some versions of the  t -test relax the population homoscedasticity assumption. 
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violated, then your answer may be wrong no matter how powerful the 
technique!     

   The Benefi ts of Covariates   

 A second direct way to bolster the statistical power of your analysis is to add 
covariates to your statistical models. Techniques like multiple-regression 
analysis, for instance, are more powerful than simpler techniques like a 
 t -test of differences in means, for this reason. As we described in Chapter 4, 
a research question about the equality of average academic achievement 
between a voucher and a no-voucher group can be addressed in data 
either by a  t -test of differences in sample means or by regressing the 
achievement outcome on a dichotomous “question” predictor that distin-
guishes participants’ membership in the treatment or control group. 
If no covariates were included in the regression model, both approaches 
would provide identical answers and have identical power. 

 However, the regression analysis approach lets you include judiciously 
selected additional variables — exogenous measures of the children’s 
demographic background, home life, and prior achievement — as covari-
ates or control predictors to the analysis, without increasing the sample 
size. Providing the new covariates are well behaved — that is, reliably mea-
sured, linearly related to the outcome, uncorrelated with the “treatment” 
predictor,   17  and independent of the existing residuals in the model 
(exogenous) — their inclusion will tend to increase the proportion of the 
outcome variation that is predicted when the model is fi tted (i.e., increase 
the value of the  R 2   statistic) and thereby reduce residual variance. A reduc-
tion in residual variance necessarily implies a shrinking of the standard 
errors associated with the estimation of regression parameters, and an 
(inversely proportional) increase in the magnitude of  t -statistics associ-
ated with the predictors. A larger  t -statistic means that you are more likely 
to reject the null hypothesis and therefore your analysis has greater power 
at the same sample size. This is evident in the third panel of Table 4.1, 
where the standard error associated with the  VOUCHER  predictor has 
declined from 1.683 to 1.269 on inclusion of student pre-test scores as a 
covariate, and the  t -statistic associated with the impact of the voucher 
treatment increased correspondingly from 2.911 to 3.23. In general, the 
impact of covariates on power can be dramatic. For instance, Light, Singer, 
and Willett (  1990  ) comment that, if you include in your regression analyses 

17.  If treatment status is assigned randomly by the investigator, then the treatment 
predictor will necessarily be uncorrelated with  all other  exogenous covariates. 
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a set of covariates that predict about half the variation in the outcome 
jointly, then you can maintain the same statistical power for your analyses 
at half the sample size. 

 The message is clear. There is always an analytic advantage to prefer-
ring a more complex statistical analysis over a less complex one because it 
provides you with an opportunity to increase precision by including cova-
riates. Greater precision brings increased statistical power, and the ability 
to detect a smaller effect at the same sample size. However, signifi cant 
knowledge is needed to use complex statistical analyses appropriately. 
In doing so, you are relying more heavily on the hypothesized structure of 
the statistical model. You have to ensure that additional assumptions are 
met. You have to do a good job, analytically speaking, with the new terms 
in the model. You need to worry about whether the new covariates meet 
the underlying requirements of the analysis in terms of the quality of their 
measurement, the functional form of their relationship with the outcome, 
whether they interact with other predictors in the model, and whether 
they are truly independent of the existing residuals, as required. Clearly, 
everything has its price! However, if it is a price that you can pay, the 
rewards are great.     

   The Reliability of the Outcome Measure Matters   

 An additional factor to consider when fi guring out how large a sample 
you will need for your research is the  reliability  of your outcome measure. 
To this point, we have assumed that the measurement of the outcome 
variable has been perfectly reliable. Of course, this is rarely the case in 
practice. All measures of observed quantities suffer from some level of 
unreliability as a result of the presence of random measurement error. 
Standardized measures of student achievement, such as those adminis-
tered in the NYSP experiment, may have reliabilities above 0.90. Measures 
of many other constructs, particularly those with less precise defi nitions, 
or those that seek to document participants’ self-reported beliefs and 
opinions, may have reliabilities that fall as low as 0.60. 

 Although psychometricians defi ne the reliability parameter formally as 
a ratio of the population variances of the true and observed scores (Koretz, 
  2008  ), you can regard measurement error as being the random “noise” 
that obscures the true “signal” in an outcome variable. Measures that are 
less reliable obscure the true signal to a greater extent and therefore make 
it more diffi cult to detect treatment effects. This means that one simple 
approach for assessing the impact of outcome unreliability on statistical 
power computations is to view it from the context of effect size. Ultimately, 
we are conducting research so that we can detect the presence of true 
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effects, and so we must account for measurement unreliability in our 
designation of observed effect size for the purposes of statistical power 
computation. In other words, because measurement fallibility under-
mines our ability to detect effects, we must plan our research in anticipation 
of even smaller effects than we would hope to detect in a world of perfect 
measurement. 

 Specifi cally, if you want to detect a true effect of a particular size, then 
you must design your research to seek an observed effect size that is equal 
to the anticipated true effect size,  multiplied by the square root of the reliabil-
ity of the outcome variable . The newly attenuated effect size thus obtained 
can then be incorporated into your power computations in the usual way. 
To give you some sense of the magnitude of the correction, imagine that 
you set your   α  -level at the 0.05 level of statistical signifi cance and are plan-
ning to design a two-group randomized experiment that will have a 
statistical power of 0.80 to detect a small effect ( ES  = 0.2). We noted ear-
lier that you should anticipate requiring a total sample size of 620 
participants. If your outcome reliability were less than perfect, but at the 
level of most published achievement tests — around 0.95, say — then you 
would need to conduct power analyses in anticipating the detection of a 
new effect size of 0.195 — that is, 0.2 multiplied by the square root of 0.95. 
To compensate for this small decline in effective effect size, total sample 
size would have to increase by 32 participants to 652. However, if your 
outcome reliability fell as low as 0.85, then your sample size would need 
to rise by 112 participants to 732. Notice that, because we take the square 
root of the outcome reliability (an estimate that always falls between 0 and 
1) before conducting the new power analysis, the impact of measurement 
reliability — in its typical ranges (0.85 to 0.95) — is mitigated and the impact 
on sample size is of the order of a few percent. Outcome reliability would 
have to fall to 0.16, for instance, before measurement unreliability would 
force you to reclassify a “medium” effect as “small.” 

 Although the impacts on power and sample size are not enormous 
when the reliability of measurement is reasonably high, it is worth paying 
attention to the potential impact of measurement reliability on your 
power analyses. Specifi cally, we suggest that you incorporate two steps in 
your research planning in order to deal with reliability of measurement. 
First, you should always make sure — by pre-research piloting, detailed item 
analysis, and prior editing and refi nement of your instruments — that you 
administer measures of the highest reliability possible for the construct, 
audience, and context in your research. Second, you should always antici-
pate the presence of measurement error in your assessment of effect size 
and conduct your power analyses at that smaller effect size. Fortunately, 
with any decently constructed and reasonably reliable measure, this will 
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probably mean that you will only have to increase your anticipated total 
sample size by a few percent.     

   The Choice Between One-Tailed and Two-Tailed Tests   

 Finally, we return to the question of whether it makes sense to adopt a 
one-tailed (directional) or a two-tailed (nondirectional) test when con-
ducting data analyses. Earlier, in our replication of the original analyses 
of the NYSP data in Chapter 4, we made use of a two-tailed test. The 
reason was that we wanted to retain an open mind and proceed as though 
the jury were still out on the effectiveness of educational vouchers. If we 
were ultimately to reject a null hypothesis of no group difference in out-
come between those randomly assigned vouchers and those not, we did 
not want to prejudge whether any detected effect favored the voucher 
recipients or control-group members. 

 In contrast, when we reviewed the concept of hypothesis testing and 
introduced the notion of statistical power in this chapter, we made use of 
a one-tailed test. We did this to make our pedagogic explanations of Type I 
and Type II error simpler. In particular, this decision allowed us to focus 
only on the single  upper  tail of the pdf of the test statistic, under  H 0  , and 
the area trapped beneath it, in  Figures  6.1   and   6.2  . Now that these con-
cepts have been established, it makes sense to consider the consequences 
for statistical power analysis of the choice between a non-directional (two-
tailed) and a directional (one-tailed) test. The answer is straightforward. 

 When you adopt a one-tailed test, essentially you place your entire 
reservoir of Type I error — typically, 5 %  — into the area trapped beneath the 
upper tail of the pdf of the test statistic under  H 0   and the critical value. 
This is what we are illustrating in the fi rst row of Figure   6.2  . By adopting 
an  α -level of 5 % , say, and insisting on a one-tailed test, we fi x the critical 
value of the  t -statistic at the place already displayed in the fi gure. 

 If we were to now change our minds and opt for a two-tailed test, we 
would need to adopt a new critical value for the  t -statistic, and this would 
affect both our Type II error and statistical power. For instance, under 
the non-directional testing option, we would need to accept that Type I 
error could potentially occur at either end of the pdf of the test statistic 
under  H 0  . We could falsely reject the null hypothesis because the value of 
 t observed   was driven to be either too large or too small as a result of the idio-
syncrasies of sampling. Either way, we would reject  H 0   incorrectly, and 
commit a Type I error. As a result, we need to split our adopted Type I 
error level — usually, 5 %  — into two halves, each of 2.5 % . We would then 
choose a new critical value of the  t -statistic, so that 2.5 %  of the area 
beneath the pdf of the test statistic (under  H 0  ) was entrapped to the right 
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of its positive value at the upper end and 2.5 %  of the area was entrapped 
to the left of its negative value at the lower end.   18  As a consequence, the 
magnitude of the new  t critical   must be larger than that currently displayed. 

 In going from the existing critical value of the  t -statistic obtained under 
the one-tailed test of our initial explanation to the new larger critical value, 
we have effectively moved the vertical dashed reference line in Figure   6.2   —
 the line that also splits the pdf of the  t -statistic under  H A  , in the second 
row of the fi gure — to the right. Thus, the Type II error (  β  ) — represented by 
the area entrapped beneath the pdf of the test statistic (under  H A  ) to the 
left of the dashed vertical line — will have increased. Concurrently, the sta-
tistical power — the complement of that area, to the right of the vertical 
dashed line — must be reduced. Thus, switching from a one-tailed to a two-
tailed test implicitly reduces the power of a statistical test. 

 We conclude by reminding you then that, in most research, two-tailed 
tests are the order of the day, even though they are implicitly less power-
ful than one-tailed tests. Only when you can mount a compelling defense 
of the argument that a particular policy or intervention can have only a 
directed impact (positive or negative) on the outcomes of interest, in the 
population, is the use of one-tailed tests justifi ed.      

   What to Read Next   

 If you want to learn more about statistical power, we suggest that you 
consult the classic text by Jacob Cohen entitled  Statistical Power Analysis 
for the Behavioral Sciences  (1988, 2nd edition).   
                                                   

18.  Implicitly, in the two-tailed case, because the pdf of the  t- statistic (under  H 0  ) is sym-
metric,  t critical   will take on two values of the same magnitude — one positive and the 
other negative — which are equally spaced on either side of the center of the pdf. 
During the subsequent test, if the value of the observed  t -statistic is positive, it will be 
compared to the upper positive value of  t critical  ; if it is negative, it will be compared to 
the lower negative value. 




