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Introduction

Introduction

Trend Analysis is a name given to a particular technique that typically
accompanies an ANOVA when one (or more) of the factors has a sensible
quantitative representation.

If the levels of the factor are evenly spaced, and sample sizes are equal,
then the trend analysis can be accomplished as a sequence of contrast
hypothesis tests, using specially chosen linear weights called “orthogonal
polynomials.”

However, it turns out that we need not perform “trend analysis” that way.
There is a much easier way, which we’ll demonstrate in this module.
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

In multiple regression, there is a test of significance that is routinely
performed when a term is added to the regression equation.

This test assess whether the R2 value has significantly increased with the
addition of the term.

One way to do this is to compute the residual of the new term predicted
from the old term(s), and compute the correlation between this residual
and the criterion. This correlation is known as the “semipartial” or “part”
correlation between the criterion and the last predictor with the earlier
predictors “factored out.”

The squared semipartial correlation is precisely equal to the change in R2

produced by adding a new predictor.

This is explained graphically by Cohen, Cohen, Aiken and West (2003, p.
72).
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Sequential Multiple Regression Modeling
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

When terms are added sequentially, we say the models are a nested
sequence. Each earlier model may be viewed as a special case of the later
model (with some coefficients equal to zero).

When the models are a nested sequence, an F -test may be performed to
test whether an additional term “adds something significant” to the
prediction equation, in the sense of increasing R2 or (equivalently) having
a nonzero squared semi-partial correlation.

In standard multiple regression, the very first predictor is, effectively,
compared to a model with just an intercept term. The system described
above still holds, because an intercept term is a vector with all values
equal to 1, so the residuals of the first predictor with this column of 1’s
factored out is just the set of deviation scores for the first predictor.

The correlation between these deviation scores and Y is, of course, equal
to the correlation between X1 and Y , so the change in R2 from adding X1

(over and above the intercept) is just the square of the simple Pearson r
between Y and X1.
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

There are several aspects of sequential regression modeling that may not
be obvious at first glance.

One aspect is that order matters!

A variable may not be significant if it is added second, while it might be
highly significant if added first.

Let’s investigate a couple of aspects of this with a brief numerical example.
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

The data file example1.csv contains 20 observations on an integer
predictor x and a criterion y .

Suppose, for the sake of argument, we wished to predict y from x and x2,
and decided to perform the analysis in a sequential fashion, first analyzing
the model with only x , then adding x2 to see whether the model improved
significantly.
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

> example1 <- read.csv("example1.csv")

> attach(example1)

> plot(x,y)
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Sequential Multiple Regression Modeling

Sequential Multiple Regression Modeling

First we’ll compute the model with only the intercept as a predictor, then
with x as a predictor, then the model with x and x2 as predictors.

To compare the models, we actually have two options. The “manual”
approach involves giving the anova() command the models, and asking
the function to compare them.

The second approach involves just giving the anova() command the full
model. In that case, it automatically constructs all sequential tests,
starting from the first term. Here we go:
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> fit.0 <- lm(y ~ 1)

> fit.1 <- lm(y ~ 1 + x )

> fit.2 <- lm(y ~ 1 + x + I(x^2))

> anova(fit.0,fit.1,fit.2)

Analysis of Variance Table

Model 1: y ~ 1

Model 2: y ~ 1 + x

Model 3: y ~ 1 + x + I(x^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 19 1846.47

2 18 59.02 1 1787.45 2340.38 < 2.2e-16 ***

3 17 12.98 1 46.04 60.28 5.474e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(fit.2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1787.45 1787.45 2340.38 < 2.2e-16 ***

I(x^2) 1 46.04 46.04 60.28 5.474e-07 ***

Residuals 17 12.98 0.76

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

Let’s look at the summaries of the two models.

We see that both x and x2 are significant predictors, and that the
regression coefficient for x in the full model is 0.9763 and the coefficient
for x2 is 0.8489.

We can also look at the squared multiple correlations for the two models,
and the difference between them.
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> summary(fit.1)

Call:

lm(formula = y ~ 1 + x)

Residuals:

Min 1Q Median 3Q Max

-3.1153 -1.2902 0.4886 1.3433 2.7800

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.2570 0.8312 -7.528 5.76e-07 ***

x 5.9464 0.2547 23.348 6.56e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.811 on 18 degrees of freedom

Multiple R-squared: 0.968, Adjusted R-squared: 0.9663

F-statistic: 545.1 on 1 and 18 DF, p-value: 6.556e-15
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> summary(fit.2)

Call:

lm(formula = y ~ 1 + x + I(x^2))

Residuals:

Min 1Q Median 3Q Max

-1.8435 -0.3942 -0.0105 0.3111 1.7774

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.1332 0.7723 -1.467 0.161

x 0.9763 0.6518 1.498 0.153

I(x^2) 0.8489 0.1093 7.764 5.47e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8739 on 17 degrees of freedom

Multiple R-squared: 0.993, Adjusted R-squared: 0.9921

F-statistic: 1200 on 2 and 17 DF, p-value: < 2.2e-16
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> summary(fit.1)$r.squared

[1] 0.9680353

> summary(fit.2)$r.squared

[1] 0.9929684

> summary(fit.2)$r.squared - summary(fit.1)$r.squared

[1] 0.02493308
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

Next, we demonstrate that the regression coefficient and squared multiple
correlation would remain the same if we used the regression residual of x2

with x partialled out, instead of x2, in our model.

Let’s try it by first computing the residual, then employing it in the model.
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> x2.dot.x <- residuals(lm(I(x^2) ~ x))

> fit.2.b <- lm(y ~ 1 + x + x2.dot.x)

> summary(fit.2.b)

Call:

lm(formula = y ~ 1 + x + x2.dot.x)

Residuals:

Min 1Q Median 3Q Max

-1.8435 -0.3942 -0.0105 0.3111 1.7774

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.2570 0.4011 -15.598 1.66e-11 ***

x 5.9464 0.1229 48.378 < 2e-16 ***

x2.dot.x 0.8489 0.1093 7.764 5.47e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8739 on 17 degrees of freedom

Multiple R-squared: 0.993, Adjusted R-squared: 0.9921

F-statistic: 1200 on 2 and 17 DF, p-value: < 2.2e-16
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Sequential Multiple Regression Modeling An Example

Sequential Multiple Regression Modeling
An Example

> summary(fit.2.b)$r.squared

[1] 0.9929684

> summary(fit.2.b)$r.squared - summary(fit.1)$r.squared

[1] 0.02493308

> cor(y,x2.dot.x)^2

[1] 0.02493308
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Trend Analysis in 1-Way ANOVA

Suppose that, in ANOVA, our factor is actually quantitative, and the levels
are evenly spaced.

We wish to test for “significant trend,” in the sequential sense. That is, if
we plot the cell means versus the values of the quantitative factor, is there
a significant linear trend?

And once we factor out the linear trend, is there a significant quadratic
trend over and above this linear trend?

Since the values are “stacked” at a handful of points along the x-axis, this
question amounts to plotting the cell means and computing some sums of
squares.

Why? Well, consider any prediction you might have for the shape of the
plot of cell means. How can you test whether that prediction agrees with
the cell means?
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Trend Analysis in 1-Way ANOVA

Trend Analysis in 1-Way ANOVA

The answer is surprisingly simple. Simply compute a contrast, using your
predictions as contrast weights!

Let’s examine this in the case of linear trend. First, let’s recall a little
algebra.

When sample sizes are equal to n, the generalized t-statistic we learned
about in Pychology 310 has the following form to test the null hypothesis
that ψ =

∑
j wjµj = 0.

t =

∑
j wj Ȳj√(∑

j w
2
j /n
)
MSS|A

(1)
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Trend Analysis in 1-Way ANOVA

Squaring this produces an F with 1 numerator degree of freedom, i.e.,

F =
n
(∑

j w
∗
j Ȳj

)2
MSS|A

(2)

=
SSψ

MSS |A
(3)

=
MSψ
MSS |A

(4)

where the w∗j are weights that sum to zero, and which have a sum of
squares equal to 1, and are computed as

w∗j =
wj√∑
j w

2
j

(5)
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Trend Analysis in 1-Way ANOVA

So how would we test that there is significant linear trend between the x
values for the factor, and the population means of y at the various levels?

This is a test that β1 = 0, where β1 is the slope of the regression line.

Recall that the formula for β1 is

β1 =
ρyx
σyσx

=
σyx
σ2x

(6)

So β1 is zero if and only if syx = 0. Note that the fixed regression model
assumes that the x scores are fixed, so that there is no distinction between
X̄ and µx .
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Trend Analysis in 1-Way ANOVA

Trend Analysis in 1-Way ANOVA

Moreover, recall that, when computing a covariance, only one of the
variables need be converted to deviation score form.

Consequently, a test of β1 = 0 is simply a test that∑
j

(X̄•j − X̄••)(µj − µ) =
∑
j

ξjµj = 0 (7)

Since every observation in the jth group will have the same xj , the ξj are
contrast weights corresponding to the x values in deviation score form. As
we noted in a previous lecture, the test statistic, and SSψ, are invariant
under multiplicative rescaling of the ξj , and so, for convenience, we can
scale them so that they are integers.

So, for example, if there are 5 levels of the (equally spaced) independent
variable, the weights will always be −2,−1, 0, 1, 2.
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Trend Analysis in 1-Way ANOVA

Trend Analysis in 1-Way ANOVA

But what about the quadratic (and cubic, etc.) term?

In a sense, we have already answered that question. We saw in the
preceding section that the β2 for the quadratic term is actually equivalent
to the regression coefficient in a simple regression between y and the x2

values with the x values factored out.

And, the cubic weights are the residuals of the cubed values predicted
from the values and their squares, etc.

We can compute those values in a few lines of R code. (In some cases, we
rescale the results to get integers. It would make no difference in the
computations, but I do this so that you can compare these results to those
in the table of “orthogonal polynomials” in RDASA3, p.702.) If there are
5 levels of a factor, the weights are. . .
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Trend Analysis in 1-Way ANOVA

Trend Analysis in 1-Way ANOVA

> x.wts <- c(1,2,3,4,5)

> linear.wts <- x.wts - mean(x.wts)

> quadratic.wts <- residuals(lm(linear.wts^2 ~ linear.wts))

> cubic.wts <- residuals(lm(linear.wts^3 ~ linear.wts + quadratic.wts))

> cubic.wts <- zapsmall(cubic.wts)/1.2

> quartic.wts <- residuals(lm(linear.wts^4 ~ linear.wts + quadratic.wts + cubic.wts))

> quartic.wts <- quartic.wts/quartic.wts[1]

> linear.wts

[1] -2 -1 0 1 2

> quadratic.wts

1 2 3 4 5

2 -1 -2 -1 2

> cubic.wts

1 2 3 4 5

-1 2 0 -2 1

> quartic.wts

1 2 3 4 5

1 -4 6 -4 1
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Trend Analysis: A 1-Way Example

We load in the gsr data used in the example shown in Table 11.3. We
then run a 1-Way ANOVA to obtain the SSA and the SSS|A error term.

> gsr <- read.csv("GSR data.csv")

> gsr$STIMULUS <- factor(gsr$STIMULUS)

> anova(lm(GSR2 ~STIMULUS,data=gsr))

Analysis of Variance Table

Response: GSR2

Df Sum Sq Mean Sq F value Pr(>F)

STIMULUS 4 35.261 8.8153 3.914 0.008234 **

Residuals 45 101.351 2.2522

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Trend Analysis: A 1-Way Example

Next, we get the cell means, and from them and the weights, it is easy to
compute the sum of squares for each trend. In the function
TrendAnalysis available on the website, I automate the process.

If you study the code, you will notice that the vast majority of effort is
involved in setting up the table labels and doing housekeeping.

> ybars <- aggregate(GSR2 ~ STIMULUS, mean,data=gsr)[,2]

> n <- 10

> wts <- rbind(linear.wts,quadratic.wts,cubic.wts,quartic.wts)

> MSerror <-101.351/45

> TrendAnalysis(wts,ybars,n,MSerror,3)

SS df MS F p.value

Linear 14.8225 1 14.8225 6.5812128 0.01370937

Remain1 20.4387 3 6.8129 3.0249381 0.03919296

Quadratic 14.7875 1 14.7875 6.5656728 0.01381388

Remain2 5.6512 2 2.8256 1.2545707 0.29498162

Cubic 3.6100 1 3.6100 1.6028456 0.21201553

Remain3 2.0412 1 2.0412 0.9062959 0.34618477
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Trend Analysis as Regression

Trend Analysis as Regression

Although the contrast-based approach makes it reasonably easy to perform
trend analysis, it turns out that most of the effort we just expended is
completely unnecessary.

Trend analysis is nothing more than sequential regression, using
sequentially “orthogonalized” powers of the independent factor as
predictors.

Along the way, we should make a side point. We can easily perform the
generalized t-test as an F test using linear regression.

Let’s see how this works.
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Trend Analysis as Regression
Contrast Tests via Regression

Suppose we had two means, and we wish to perform the test that
µ1 − µ2 = 0. Suppose, for example, the data were as shown below. We
can perform the contrast test as a regression test.

> Group1 <- c(1,2,3)

> Group2 <- c(6,8,10)

> Y <- c(Group1,Group2)

> Wts <- c(1/3,1/3,1/3,-1/3,-1/3,-1/3)

> summary(lm(Y~Wts))

Call:

lm(formula = Y ~ Wts)

Residuals:

1 2 3 4 5 6

-1.000e+00 1.234e-15 1.000e+00 -2.000e+00 1.793e-16 2.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0000 0.6455 7.746 0.00150 **

Wts -9.0000 1.9365 -4.648 0.00968 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.581 on 4 degrees of freedom

Multiple R-squared: 0.8438, Adjusted R-squared: 0.8047

F-statistic: 21.6 on 1 and 4 DF, p-value: 0.009679

> source("http://www.statpower.net/R312/t1.R")

> output <- two.sample.t(mean(Group1),sd(Group1),

+ length(Group1),mean(Group2),sd(Group2),length(Group2))

> output$t^2

[1] 21.6

We can see that the square of the t statistic is identical to the F statistic
for the regression analysis.
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Trend Analysis as Regression
Contrast Tests via Regression

This works for unequal n as well.

> Group1 <- c(1,2,3)

> Group2 <- c(6,8)

> Score <- c(Group1,Group2)

> Wts <- c(1/3,1/3,1/3,-1/2,-1/2)

> summary(lm(Score~Wts))

Call:

lm(formula = Score ~ Wts)

Residuals:

1 2 3 4 5

-1.000e+00 -1.407e-17 1.000e+00 -1.000e+00 1.000e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0000 0.5164 7.746 0.00447 **

Wts -6.0000 1.2649 -4.743 0.01777 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.155 on 3 degrees of freedom

Multiple R-squared: 0.8824, Adjusted R-squared: 0.8431

F-statistic: 22.5 on 1 and 3 DF, p-value: 0.01777

> output <- two.sample.t(mean(Group1),sd(Group1),length(Group1),

+ mean(Group2),sd(Group2),length(Group2))

> output

$t

[1] -4.743416

$df

[1] 3

$p.value

[1] 0.0177719

> output$t^2

[1] 22.5
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Trend Analysis as Regression
Running the Trend Analysis as Regression

We read the data back in so that STIMULUS is treated as numeric. To
obtain the significance tests for linear, quadratic, cubic, and quartic trend,
we simply perform the regression analysis.

> gsr <- read.csv("gsr data.csv")

> anova(lm(GSR2 ~ STIMULUS + I(STIMULUS^2) +

+ I(STIMULUS^3) + I(STIMULUS^4),data=gsr))

Analysis of Variance Table

Response: GSR2

Df Sum Sq Mean Sq F value Pr(>F)

STIMULUS 1 14.822 14.8225 6.5812 0.01371 *

I(STIMULUS^2) 1 14.787 14.7875 6.5657 0.01381 *

I(STIMULUS^3) 1 3.610 3.6100 1.6028 0.21202

I(STIMULUS^4) 1 2.041 2.0412 0.9063 0.34618

Residuals 45 101.351 2.2522

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Trend Analysis as Regression
Plotting Trend Analysis Results

Note that the linear and quadratic components are significant, but the
cubic and quartic are not.

Moreover, the p-values match those in RDASA3 Table 11.3.

We can reanalyze in terms of just the linear and quadratic terms (plus the
intercept).
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Trend Analysis as Regression
Plotting Trend Analysis Results

Now, let’s proceed to try to replicate some of the other results in the
chapter. Figure 11.1a presents a plot of trend components.

In figure 11.1a, the intercept (Grand Mean), linear, and quadratic terms
are plotted separately. Summed together, they produce the “predicted”
group means that are plotted along with the observed cell means in Figure
11.1b.

MWL derive coefficients for predicting the means as a function of the
orthogonal polynomial weights given in their Table C.6.

Once the coefficients are calculated as in Equations 11.16–11.17, they can
be applied to the orthogonal polynomial weights to produce predicted
values, as shown on p. 284 of RDASA3. (Note: There are some minor
typographical or rounding errors in these calculations.)

However, using the regression approach, we can bypass these hand
calculations.
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Trend Analysis as Regression
Plotting Trend Analysis Results

As in the book, we shall confine ourselves to the linear and quadratic
terms. We start by producing the 3 sequential models involving just the
intercept, then the intercept and linear term, and finally the intercept,
linear, and quadratic terms.

> fit0 <- lm(GSR2 ~ 1,data=gsr)

> fit1 <- lm(GSR2 ~ 1 + I(STIMULUS), data=gsr)

> fit2 <- lm(GSR2 ~ 1 + STIMULUS + I(STIMULUS^2), data=gsr)

Next, we set up the sequentially predicted trend components.

> y0 <- predict(fit0)

> y1 <- predict(fit1) - y0

> ## NOTE, y1 also equals predict(fit1) - predict(fit0)

> y2 <- predict(fit2) - y1 -y0

> ## NOTE, y2 also equals predict(fit2) - predict(fit1)

We’ll plot them on the next slide.
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Trend Analysis as Regression
Plotting Trend Analysis Results

> plot(gsr$STIMULUS,y0,type="l",ylim=c(-2,8),

+ lty=21,col=1,xlab="Stimulus",ylab="GSR",

+ main="GSR vs. Stimulus Size",lwd=2)

> lines(gsr$STIMULUS,y1,lty=22,col=2,lwd=2)

> lines(gsr$STIMULUS,y2,lty=23,col=3,lwd=2)

> legend("topright",c("Intercept","Linear","Quadratic"),

+ lty=c(21,22,23),col=c(1,2,3))
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Trend Analysis as Regression
Plotting Trend Analysis Results

We can also reproduce Figure 11.1b. This figure plots both the predicted
group means (from the full quadratic model), and the observed group
means. We can grab the group means easily in several ways.

Note that, when we plot the group means, we use all the STIMULUS data,
but when we plot the group means, we just use the five distinct values of
7,9,11,13,15.
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Trend Analysis as Regression
Plotting Trend Analysis Results

> group.data <- aggregate(GSR2 ~ STIMULUS,mean,data=gsr)

> stimulus.values <- group.data[,1]

> group.means <- group.data[,2]

> plot(stimulus.values,group.means,type="l",ylim=c(2.5,6),

+ lty=21,col=1,xlab="Stimulus",ylab="GSR",

+ main="GSR vs. Stimulus Size \n Quadratic Model",

+ lwd=2

+ )

> lines(gsr$STIMULUS,predict(fit2),lty=22,col=2,lwd=2)

> legend("bottomright",c("Observed","Predicted"),

+ lty=c(21,22),col=c(1,2))
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Interactions in Trend Analysis

In Section 11.5 of RDASA3, the authors discuss extending trend analysis
to the case of multi-factor designs.

They present data for GSR responses to 3 categories of patients (MS =
Mildly Schizophrenic, SS = Severely Schizophrenic, C = Control). Again,
the subjects responded to stimulus heights of 7, 9, 11, 13, and 15 inches.

In the context of this experiment, we might ask whether the linear or
quadratic components of trend differ across various participant categories,
and, if so, precisely how. One way of getting at this is to compute
interaction effect tests separately for trend components.

On the next slide, we show how to reproduce the results in Table 11.5 of
RDASA3. We see that, overall, there are significant linear and quadratic
trends in the Stimulus variable, but that there is an interaction between
the quadratic trend component and the CATEGORY variable that suggests
this trend varies across diagnostic categories.
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> gsr <- read.csv("GSR2 data.csv")

> fit.1 <- lm(GSR ~ Category * factor(Stimulus), data = gsr)

> fit.2 <- lm(GSR ~ Category *

+ (Stimulus + I(Stimulus^2) + I(Stimulus^3) + I(Stimulus^4))

+ ,data=gsr)

> anova(fit.1)

Analysis of Variance Table

Response: GSR

Df Sum Sq Mean Sq F value Pr(>F)

Category 2 7.145 3.5723 3.0123 0.055164 .

factor(Stimulus) 4 21.628 5.4071 4.5594 0.002377 **

Category:factor(Stimulus) 8 19.240 2.4050 2.0280 0.054309 .

Residuals 75 88.943 1.1859

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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> anova(fit.2)

Analysis of Variance Table

Response: GSR

Df Sum Sq Mean Sq F value Pr(>F)

Category 2 7.145 3.5723 3.0123 0.0551644 .

Stimulus 1 5.408 5.4080 4.5602 0.0359879 *

I(Stimulus^2) 1 15.750 15.7500 13.2809 0.0004915 ***

I(Stimulus^3) 1 0.072 0.0720 0.0607 0.8060460

I(Stimulus^4) 1 0.398 0.3982 0.3358 0.5640035

Category:Stimulus 2 1.992 0.9962 0.8400 0.4357305

Category:I(Stimulus^2) 2 11.756 5.8780 4.9565 0.0095118 **

Category:I(Stimulus^3) 2 1.369 0.6847 0.5773 0.5638682

Category:I(Stimulus^4) 2 4.122 2.0611 1.7380 0.1828846

Residuals 75 88.943 1.1859

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Since only the linear and quadratic terms are significant, and the only
significant interaction is between CATEGORY and the quadratic trend
component, a reasonable approach to a follow-up analysis would be to
construct plots of the quadratic trend for each of the three categories, to
try to pinpoint where the differences lie.

To do that, we simply extract the data by category, and perform an
analysis similar to the one above for each category.

James H. Steiger (Vanderbilt University) 41 / 43



Interactions in Trend Analysis

Interactions in Trend Analysis

> Stimulus <- c(7,9,11,13,15)

> S <- data.frame(Stimulus)

> fit1.C <- lm(GSR ~ 1 + Stimulus, data=subset(gsr,Category=="C"))

> fit2.C <- lm(GSR ~ 1 + Stimulus + I(Stimulus^2),

+ data=subset(gsr,Category=="C"))

> y2.C <- predict(fit2.C,newdata=S)-predict(fit1.C,newdata=S)

> fit1.MS <- lm(GSR ~ 1 + Stimulus, data=subset(gsr,Category=="MS"))

> fit2.MS <- lm(GSR ~ 1 + Stimulus + I(Stimulus^2),

+ data=subset(gsr,Category=="MS"))

> y2.MS <- predict(fit2.MS,newdata=S)-predict(fit1.MS,newdata=S)

> fit1.SS <- lm(GSR ~ 1 + Stimulus, data=subset(gsr,Category=="SS"))

> fit2.SS <- lm(GSR ~ 1 + Stimulus + I(Stimulus^2),

+ data=subset(gsr,Category=="SS"))

> y2.SS <- predict(fit2.SS,newdata=S)-predict(fit1.SS,newdata=S)
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> plot(Stimulus,y2.C,type="l",lty=21,col=1,

+ main="Quadratic Trend by Category",lwd=2)

> lines(Stimulus,y2.MS,lty=22,col=2,lwd=2)

> lines(Stimulus,y2.SS,lty=23,col=3,lwd=2)

> legend("topright",

+ c("Category = C","Category = MS","Category = SS"),

+ lty=21:23,col=1:3)
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Trend Analysis with Unequal Spacing

We have seen how to perform sophisticated trend analysis calculations in
just a few lines of R code.

One significant payoff of the “regression approach” to trend analysis is
that it allows us to recognize that trend analysis is simply another kind of
sequential regression analysis.

Another potential payoff is that, should we inherit a data set in which the
quantitative levels of an independent variable are not equally spaced, we
don’t have to change anything! We simply do the analysis.

Other approaches require, at the least, recomputation of the orthogonal
polynomial weights. This can be done exactly as we computed the
standard weights early in this module.

Suppose we have 5 levels, and they are 7,8,9,11,15. In deviation score
form, these are −3,−2,−1, 1, 5. We can now derive quadratic, cubic and
quartic weights using the same sequential regression approach shown
earlier.

However, there is simply no need to do this. As we have shown, all the
calculations can be done directly, using the original level values.
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