Introductory Distribution Theory

James H. Steiger

Department of Psychology and Human Development
Vanderbilt University

P311, 2012
Introductory Distribution Theory

1. Introduction

2. The Chi-Square Distribution
   - Some Basic Properties
   - Basic Chi-Square Distribution Calculations in R
   - Convergence to Normality
   - The Chi-Square Distribution and Statistical Testing

3. The $F$ Distribution
   - Characterization of the $F$ Distribution
   - The $F$-Ratio Test

4. Noncentral Chi-Square Distribution
   - Introduction
   - Calculations with the Noncentral Chi-Square Distribution
   - The Effect of Noncentrality

5. Noncentral $F$ Distribution
   - Introduction
   - Asymptotic Behavior
   - Calculations in the Noncentral $F$
In this module, we review basic facts about the central and noncentral $\chi^2$ and $F$ distributions, and how they are relevant to statistical testing.

Some of this material was covered in Psychology 310.
The Chi-Square Distribution

Basic Characterization

- Suppose you have an observation $x$ taken at random from a normal distribution with mean $\mu$ and variance $\sigma^2$ that you somehow knew.
- We can characterize this as a realization of a random variable $X$, where $X \sim \text{N}(\mu, \sigma)$.
- Now suppose we were to transform $X$ to $Z$-score form, i.e., $Z = (X - \mu)/\sigma$. Then we would have a random variable $Z \sim \text{N}(0, 1)$.
- Finally, suppose we were to square $Z$. This random variable $Z^2$ is said to have a *chi-square distribution with one degree of freedom*.
- We write $Z^2 \sim \chi^2_1$. 

A $\chi_1^2$ random variable is essentially a folded-over and stretched out normal.

Here’s a picture of the density function of a standardized normal random variable and a $\chi_1^2$ random variable overlaid on the same graph.
The Chi-Square Distribution

Some Properties

\begin{verbatim}
> curve(dchisq(x,1),0,9,col="red",lty=1,xlim=c(-9,9),ylim=c(0,1.5))
> curve(dnorm(x),-9,9,col="blue",lty=2,add=T)
> abline(v=0)
\end{verbatim}
The Chi-Square Distribution

Some Properties

- With a little thought, you can see that because the graph is “folded over”, the 95th percentile of the $\chi_1^2$ distribution is the square of the 97.5th percentile of the standard normal distribution.
- The mean of a $\chi_1^2$ variable is 1.
- The variance of a $\chi_1^2$ variable is 2.
- The sum of $\nu$ independent $\chi_1^2$ variables is said to have a chi-square distribution with $\nu$ degrees of freedom, i.e.,

\[
\sum_{j=1}^{\nu} \chi_1^2 \sim \chi_\nu^2
\]  

(1)

- The preceding results, along with well-known principles regarding the mean and variance of linear combinations of variables, implies that, for independent chi-squares having $\nu_1$ and $\nu_2$ degrees of freedom,

\[
\chi_{\nu_1}^2 + \chi_{\nu_2}^2 \sim \chi_{\nu_1+\nu_2}^2
\]

(2)

\[
E(\chi_{\nu}^2) = \nu
\]

(3)

\[
\text{Var}(\chi_{\nu}^2) = 2\nu
\]

(4)
Basic Calculations

- We perform basic calculations in R using the `dchisq` function to plot the density, `pchisq` to compute cumulative probability, and `qchisq` to compute percentage points.
- We’ve already seen an example of `dchisq` in our earlier chi-square distribution plot.
- Here we calculate the cumulative probability of a value of 3.7 in a $\chi^2$ distribution.
  > `pchisq(3.7,2)`
  > [1] 0.8427628
- Here we calculate the 95th percentile of a $\chi^2$ variable.
  > `qchisq(.95,5)`
  > [1] 11.0705
Recall that the $X^2_\nu$ variate is the sum of independent $X^2_1$ variates.

Consequently, as degrees of freedom increase, the distribution of the $\chi^2_\nu$ variate should tend toward normality, because of the “central limit” effect.

Here is a picture of chi-square variates with 2, 10, 50, and 100 degrees of freedom.
Convergence to Normality

> par(mfrow=c(2,2))
> curve(dchisq(x,2),0,qchisq(.995,2))
> curve(dchisq(x,10),0,qchisq(.995,10))
> curve(dchisq(x,50),0,qchisq(.995,50))
> curve(dchisq(x,100),0,qchisq(.995,100))
The Chi-Square Distribution and Statistical Testing

- We’ve sketched the basic properties of the \( \chi^2 \) distribution, but how do we employ this distribution in statistical testing?
- A key result in statistical theory connects the \( \chi^2 \) with the distribution of the sample variance \( s^2 \).
- Suppose you have \( N \) independent, identically distributed (iid) observations from a normal distribution with mean \( \mu \) and variance \( \sigma^2 \).
- Then

\[
\frac{(N - 1)s^2}{\sigma^2} \sim \chi^2_{N-1} \tag{5}
\]

- This, in turn, implies that the sample variance has a distribution that has the same shape as a chi-square distribution with \( N - 1 \) degrees of freedom, since we can rearrange the preceding equation as

\[
s^2 \sim \frac{\sigma^2}{N - 1} \chi^2_{N-1} \tag{6}
\]
Test on a Single Variance

- The results on the preceding slide pave the way for a simple test of the hypothesis that $\sigma^2 = a$.
- If $\sigma^2 = a$, then
  \[
  \frac{(N - 1)s^2}{a} \sim \chi^2_{N-1} \tag{7}
  \]
- So we have a simple method for testing whether $\sigma^2 = a$: Simply compare $(N - 1)s^2/a$ with the upper and lower percentage points of the $\chi^2_{N-1}$ distribution.
Test on a Single Variance
An Example

Example (Test on a Single Variance)

Suppose you wish to test whether $\sigma^2 = 225$, and you observe $N = 146$ observations from the population which is assumed to be normally distributed. You observe a sample variance of 308.56. Perform the chi-square test with $\alpha = .05$.

Answer. The test statistic is

$$\frac{(146 - 1)308.56}{225} = 198.8498$$

The area above 198.8498 in a $\chi^2_{145}$ distribution is

```r
> 1-pchisq(198.9498,145)
[1] 0.001980618
```

To get the two-sided $p$-value, we double this, obtaining a $p$-value of

```r
> 2*(1-pchisq(198.9498,145))
[1] 0.003961237
```

Since this is less than .05, the null hypothesis is rejected. We can also confirm that 198.9498 exceeds the critical value. Since the test is two-sided, the critical value is

```r
> qchisq(.975,145)
[1] 180.2291
```
Confidence Interval on a Single Variance

- The distributional result for a single variance implies that

\[ \Pr \left( \chi^2_{N-1, \alpha/2} \leq \frac{(N - 1)s^2}{\sigma^2} \leq \chi^2_{N-1, 1-\alpha/2} \right) = 1 - \alpha \]  

(8)

- If we take the reciprocal of all 3 sections of the inequality and reverse the direction of the signs, then multiply all 3 sections by \((N - 1)s^2\), we obtain

\[ \Pr \left( \frac{(N - 1)s^2}{\chi^2_{N-1, 1-\alpha/2}} \leq \sigma^2 \leq \frac{(N - 1)s^2}{\chi^2_{N-1, \alpha/2}} \right) = 1 - \alpha \]  

(9)

- The outer two sections of this latter inequality are therefore the endpoints of a \(1 - \alpha\) confidence interval for \(\sigma^2\).
Confidence Interval on a Single Variance
An Example

Example (Confidence Interval on a Single Variance)

Suppose you observe \( N = 146 \) observations from the population which is assumed to be normally distributed. You observe a sample variance of 308.56. What is a 95% confidence interval for \( \sigma^2 \)?

Answer. In R, we compute the lower and upper limits as

\[
\begin{align*}
> & \quad s.\text{squared} <- 308.56 \\
> & \quad N <- 146 \\
> & \quad \text{lower} <- (N-1) * s.\text{squared} / \text{qchisq}(.975,N-1) \\
> & \quad \text{upper} <- (N-1) * s.\text{squared} / \text{qchisq}(.025,N-1) \\
> & \quad \text{lower} \\
> & \quad [1] \quad 248.2462 \\
> & \quad \text{upper} \\
> & \quad [1] \quad 394.0022
\end{align*}
\]

The 95% confidence limits are thus 248.2462 and 394.0022.
The Chi-Square Distribution

The F Distribution

Noncentral Chi-Square Distribution

Noncentral F Distribution

Characterization of the F Distribution

The F-Ratio Test

- The ratio of two independent chi-square variables $\chi^2_{\nu_1}$ and $\chi^2_{\nu_2}$, each divided by their respective degrees of freedom, is said to have an F distribution with $\nu_1$ and $\nu_2$ degrees of freedom.
- We will abbreviate this as $F_{\nu_1,\nu_2}$, and refer to $\nu_1$ and $\nu_2$ as the “numerator and denominator degrees of freedom,” respectively.
- The expected value and variance of an $F_{\nu_1,\nu_2}$ variate are, respectively,
  \[
  E(F) = \frac{\nu_2}{\nu_2 - 2}
  \]
  (assuming $\nu_2 > 2$
  
  \[
  \text{Var}(F) = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}
  \]
  assuming $\nu_2 > 4$.
- Since the F statistic is a ratio, and the positions of the items in numerator and denominator are, in a sense, arbitrary, it follows that the upper and lower quantiles of the F distribution satisfy the relationship
  \[
  F_{\alpha_2,\nu_1,\nu_2} = \frac{1}{F_{1-\alpha_2,\nu_2,\nu_1}}
  \]
  (12)
- That is, by reversing the degrees of freedom and taking the reciprocal, you may calculate lower percentage points of the F (which are generally not found in tables) from the upper percentage points (which are tabled).
- Modern software has rendered this point somewhat moot.
Suppose that you wish to compare the variances of two populations on the basis of two independent samples of sizes $N_1$ and $N_2$ taken at random from these populations.

Under the assumption of a normal distribution, we can see that the ratio of the two sample variances will have an $F$ distribution multiplied by the ratio of the two population variances.

So, if the two population variances are equal, the ratio of the two sample variances will have an $F$ distribution.

$$\frac{s_1^2}{s_2^2} \sim \frac{\sigma_1^2 \chi_{N_1-1}^2}{N_1-1} \frac{\sigma_2^2 \chi_{N_2-1}^2}{N_2-1} \sim \frac{\sigma_1^2}{\sigma_2^2} \frac{\chi_{N_1-1}^2}{(N_1 - 1)} \frac{\chi_{N_2-1}^2}{(N_2 - 1)} \sim \frac{\sigma_1^2}{\sigma_2^2} F_{N_1-1,N_2-1}$$
The $F$-Ratio Test

- The preceding result gives rise to an extremely simple test for comparing two variances.
- The null hypothesis is $H_0 : \sigma_1^2 = \sigma_2^2$, and so the test as traditionally performed is two-sided.
- With modern software like R, one may simply compute the ratio $s_1^2/s_2^2$, and compare the result to the $\alpha/2$ and $1 - \alpha/2$ quantiles of the $F$ distribution with $N_1 - 1$ and $N_2 - 1$ degrees of freedom.
- Alternatively, one may, after observing the data, simply put the larger of the two variances in the numerator (being careful to carry the numerator and denominator degrees of freedom into the proper positions).
The $F$-Ratio Test

An Example

Example (An Example of the $F$-Ratio Test)

Suppose you observe sample variances of $s_1^2 = 134.69$ and $s_2^2 = 185.61$ in independent samples of sizes $N_1 = 101$ and $N_2 = 95$, respectively. Assuming that samples are independent and that population distributions are normal, test the null hypothesis that $\sigma_1^2 = \sigma_2^2$.

*Answer.* In this case, we have two options. We can compute

$$\frac{s_1^2}{s_2^2} = \frac{134.69}{185.61} = 0.73$$

Since the value is less than 1, and assuming $\alpha = .05$, we compare the test statistic to the lower quantile of the $F$ distribution, i.e., $F_{.025,100,94}$, which is 0.67. Since the the observed $F$ statistic is not less than the critical value, we cannot reject “on the low side.”

Somewhat surprisingly, although there is a substantial difference in the two variances, and the sample sizes are both close to 100, we cannot reject the null hypothesis.
The $F$-Ratio Test

Here is the R code for performing the test.

```r
> var.1 <- 134.69
> var.2 <- 185.61
> F <- var.1/var.2
> F

[1] 0.7256613

> N.1 <- 101
> N.2 <- 95
> F.crit <- qf(.025,N.1-1,N.2-1)
> F.crit

[1] 0.6707914
```
The Noncentral $\chi^2$ Distribution

- The $\chi^2$ distribution we have studied so far is a special case of the noncentral chi-square distribution.
- This distribution has two parameters, the degrees of freedom and the noncentrality parameter.
- We symbolize a noncentral chi-square variate with the notation $\chi^2_{\nu,\lambda}$. 

James H. Steiger
Introductory Distribution Theory
The Noncentral $\chi^2$ Distribution

- The noncentral $\chi^2$ distribution has a characterization that is similar to that of the central $\chi^2$ distribution, i.e., if $X_i$ are $N$ independent observations taken from normal distributions with means $\mu_i$ and standard deviations $\sigma_i$. Then

$$\sum_{i=1}^{N} \left( \frac{X_i}{\sigma_i} \right)^2$$

has a $\chi^2_{N,\lambda}$ distribution with

$$\lambda = \sum_{i=1}^{N} \left( \frac{\mu_i}{\sigma_i} \right)^2$$

- When $\lambda = 0$, the noncentral chi-square distribution is equal to the standard ("central") chi-square distribution.
The Noncentral $\chi^2$ Distribution

- The $\chi^2_{\nu,\lambda}$ distribution has mean and variance given by

$$E(\chi^2_{\nu,\lambda}) = \nu + \lambda \quad (16)$$

and

$$\text{Var}(\chi^2_{\nu,\lambda}) = 2\nu + 4\lambda \quad (17)$$
• With R, the same functions that are used for the central $\chi^2$ distribution are used for the noncentral counterpart, simply by adding the noncentrality parameter as additional input.

• For example, what is the 95th percentile of the noncentral $\chi^2$ distribution with $\nu = 20$ and $\lambda = 5$?

```r
> qchisq(.95,20,5)
[1] 38.92935
```
The Effect of Noncentrality

- The effect of the noncentrality parameter $\lambda$ is to change the shape of the $\chi^2$ variate’s distribution and to move it to the right.
- In the plot below, we show four $\chi^2$ variates, each with 15 degrees of freedom, and noncentrality parameters of 0, 5, 10, 20.
The Effect of Noncentrality

> curve(dchisq(x, 15, 0), 0, qchisq(.999, 15, 20))
> curve(dchisq(x, 15, 5), add=T, col=1)
> curve(dchisq(x, 15, 10), add=T, col=2)
> curve(dchisq(x, 15, 20), add=T, col=3)
The Noncentral $F$ distribution

- The ratio of a noncentral $\chi^2_{\nu_1, \lambda}$ to a central $\chi^2_{\nu_2}$ variate, each divided by their degrees of freedom, is said to have a *noncentral $F$ distribution* with degrees of freedom $\nu_1$, $\nu_2$, and noncentrality parameter $\lambda$.

- The noncentral $F$ distribution is thus a three-parameter distribution family that includes the central $F$ distribution as a special case when $\lambda = 0$. Thus,

$$
\frac{\chi^2_{\nu_1, \lambda}/\nu_1}{\chi^2_{\nu_2}/\nu_2} \sim F_{\nu_1, \nu_2, \lambda} \quad (18)
$$
The mean and variance of the noncentral $F$ variate are given by

$$E(F_{\nu_1,\nu_2,\lambda}) = \begin{cases} \frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)} & \nu_2 > 2 \\ \text{Does not exist} & \nu_2 \leq 2 \end{cases} \quad (19)$$

and

$$\text{Var}(F_{\nu_1,\nu_2,\lambda}) = \begin{cases} 2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)} \left(\frac{\nu_2}{\nu_1}\right)^2 & \nu_2 > 4 \\ \text{Does not exist} & \nu_2 \leq 4 \end{cases} \quad (20)$$
Asymptotic Behavior

- As \( \nu_2 \to \infty \), the ratio \( \chi^2_\nu / \nu \) converges to the constant 1. This is easy to see. Obviously, dividing a chi-square variate by its degrees of freedom parameter does not affect the shape of the distribution, since it multiplies it by a constant. We have already seen that, as \( \nu \to \infty \), the shape of the \( \chi^2_\nu \) distribution converges to a normal distribution with mean \( \nu \) and variance \( 2\nu \).

- Consequently, the ratio \( \chi^2_\nu / \nu \), which has a mean of 1 and a variance of \( 2/\nu \), has a limiting distribution that is \( \text{N}(1, 0) \). That is, the distribution converges to the constant 1.

- An immediate consequence of the above is that, as \( \nu_2 \to \infty \), the distribution of the variate \( \nu_1 F_{\nu_1, \nu_2, \lambda} \) converges to a noncentral \( \chi^2_{\nu_1, \lambda} \).
With R, the same functions that are used for the central $F$ distribution are used for the noncentral counterpart, simply by adding the noncentrality parameter $\lambda$ as additional input.

For example, what is the 95th percentile of the noncentral $F$ distribution with $\nu_1 = 20$, $\nu_2 = 10$ and $\lambda = 5$?

```r
> qf(.95, 20, 10, 5)
[1] 3.456638
```