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Introduction

Introduction

So far, in our coverage of ANOVA, we have dealt only with the case of
fixed-effects models.

With fixed-effects factors, the effects of the different levels of the
independent variable are treated as fixed constants to be estimated.

In this module, we introduce the idea of a random-effect factor. The
treatment effects for random effects factors are treated as random
variables, or, equivalently, random samples from a population of possible
treatment effects.

When models include random effects, the Expected Mean Squares will
often differ from the same model with fixed effects.

In most cases, this will affect how F -tests are performed, and the
distribution of the F -statistic and its degrees of freedom.
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A One-Way Random Effects ANOVA

A One-Way Random Effects ANOVA

Suppose you are interested in the natural degree of variation in sodium
content across brands of beer.

There are hundreds of brands of beer being sold in the U.S., and you only
have time to test 8.

You select your 8 brands randomly from a list of all brands available, and
you test 6 bottles of beer for each brand.
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A One-Way Random Effects ANOVA

A One-Way Random Effects ANOVA

Although we can visualize an “effect” for each brand, we recognize that
this effect need not be conceptualized as a fixed value — in an important
sense, the effect of the first brand is a random variable, since that brand
was sampled from a larger set.

If we were only interested in generalizing to the 8 brands in the study, we
could choose to regard the effect of each beer as a fixed constant.

But because we randomly sampled the beer brands from a larger
population, we actually can generalize back to the entire population. Let’s
see how.
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A One-Way Random Effects ANOVA The Basic Model

The first thing we have to realize is that the basic ANOVA model has
changed. We now have

Yij = µj + εij

= µ+ αj + εij 1 ≤ i ≤ n, 1 ≤ j ≤ a (1)

with

εij ∼ i.i.d. N(0, σ2
e ) (2)

αij ∼ i.i.d N(0, σ2
A) (3)

I should note immediately that many books distinguish between fixed and
random effects by using Greek letters for the former and standard Arabic
letters for the latter.

We are not using that convention here, as neither textbook used recently
in this course employs it.

However, there are advantages to a notation that explicitly “types” its
effects as fixed or random.
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A One-Way Random Effects ANOVA The Basic Model

A One-Way Random Effects ANOVA
The Basic Model

This shift in models means that now there are two sources of random
variation on the right side of the model equation, while before there was
only one.

One immediate consequence of this fact is that now observations are
correlated within group!

Let’s use standard linear combination theory to derive the variances and
covariances of scores.

Since the effects αj and the errors εij are independent, it follows that

Var(Yij) = σ2
A + σ2

e (4)
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A One-Way Random Effects ANOVA The Basic Model

A One-Way Random Effects ANOVA
The Basic Model

On the other hand, consider two observations Y11 and Y21, both in group
1. What is their covariance?

We can solve directly for this, using results from Psychology 310. Since
Y11 = µ+α1 + ε11, Y21 = µ+α1 + ε21, and covariances are unaffected by
additive constants, we can see that the covariance between Y11 and Y21 is
the covariance between α1 + ε11 and α1 + ε21.

Remember the heuristic rule? We simply multiply the two expressions and
apply a conversion rule. Here is the multiplication.

(α1 + ε11)(α1 + ε21) = α2
1 + ε11ε21 + α1ε11 + α1ε21 (5)

Next we apply the conversion rule

Cov(Y11,Y21) = Var(α1) + Cov(ε11, ε21) + Cov(α1, ε11) + Cov(α1, ε21)

= σ2
A + 0 + 0 + 0

= σ2
A (6)

James H. Steiger (Vanderbilt University) 7 / 29



A One-Way Random Effects ANOVA The Basic Model

A One-Way Random Effects ANOVA
The Basic Model

So while the observations within any group are independent in the
fixed-effects model, they are correlated in the random effects model. Since
the correlation coefficient is the ratio of the covariance to the product of
standard deviations, and each observation has a variance of σ2

A + σ2
e , it

follows that, within any group, pairs of observations observations have a
correlation of

ρ =
σ2
A

σ2
A + σ2

e

(7)

This correlation is sometimes called the population intraclass correlation.
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A One-Way Random Effects ANOVA Calculations

A One-Way Random Effects ANOVA
Calculations

We are very fortunate, in that the sums of squares for the random effects
model are calculated in exactly the same way they are calculated for the
fixed effects model.
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A One-Way Random Effects ANOVA Expected Mean Squares and F Test

A One-Way Random Effects ANOVA
Expected Mean Squares and F Test

Remember that earlier in the course, I mentioned that ultimately Expected
Mean Squares would play an important role in deciding how to perform an
F test on a particular model. We have almost reached that point. Notice
in the table below that the expected mean squares for the random effects
model are almost identical to those for the fixed effects model.
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A One-Way Random Effects ANOVA Expected Mean Squares and F Test

A One-Way Random Effects ANOVA
Expected Mean Squares and F Test

The F test construction principle says that, to construct a test for an
effect of interest:

1 Take the E (MS) for the effect. Examine which component(s) of the
E (MS) involve the effect of interest. Under the null hypothesis, these
will be zero.

2 Imagine that the null hypothesis is true. This will cause the terms
identified in the previous step to drop out. This revised formula is
your “Null Effect Formula.” It will be the numerator of your F
statistic for this effect.

3 Scan the list of E (MS) formulas, and find a formula that is identical
to the “Null Effect Formula.” This will be the denominator (error)
term for your F test.
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A One-Way Random Effects ANOVA Expected Mean Squares and F Test

A One-Way Random Effects ANOVA
Expected Mean Squares and F Test

Below is a table with Expected Mean Squares for 1-Way ANOVA with
fixed effects, and with random effects.

In this case, how do we compute the F statistic for the A effect? Let’s do
it step by step for the random effects model:

 Expected MS 
Factor Fixed Effects Model Random Effects Model 

A 2 2
Ae nσ θ+  2 2

Ae nσ σ+  
S/A 2

eσ  2
eσ  

 

1 The MS for your effect (MSA) will be the numerator of the F
statistic. Take the E (MS) for the effect. (E (MSA) = σ2

e + nσ2
A)

Examine which component(s) of the E (MS) involve the effect of
interest. (nσ2

A) Under the null hypothesis, these will be zero.

2 Imagine that the null hypothesis (H0 : σ2
A = 0), is true. This will

cause the term identified in the previous step to drop out. This revised
formula is your “Null Effect Formula.” (E (MSA) = σ2

e + nσ2
A = σ2

e )

3 Scan the list of E (MS) formulas, and find a formula that is identical
to the “Null Effect Formula.” This will be the denominator (error)
term for your F test. Since E (MSS/A) = σ2

e , MSS/A will be our
denominator (error) term.
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A One-Way Random Effects ANOVA Expected Mean Squares and F Test

A One-Way Random Effects ANOVA
Expected Mean Squares and F Test

You can quickly see that the F test for the A effect in the fixed effects
model also uses MSS/A as the error term.

Thus, by our F -test construction principle, the F statistic is computed as
MSA/MSS/A in both models.

With the F test computed the same way, one might be tempted to think
that it has the same distribution. It does when the null hypothesis is true,
but it does not when the null hypothesis is false.
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A One-Way Random Effects ANOVA Expected Mean Squares and F Test

A One-Way Random Effects ANOVA
Expected Mean Squares and F Test

The general distribution of the F -statistic in the one-way random effects
model is

(1 +
nσ2

A

σ2
e

)Fa−1,a(n−1)

Note that when H0 is true, the distribution has a central F distribution
identical to the fixed effects model.

However, when H0 is false, the distribution is not a noncentral F , but
rather a constant multiplied by a central F .
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Two-Way Model with Both Effects Random

Two-Way Model with Both Effects Random

The model for the CRF-pq model with both effects random is

Yijk = µjk + εijk (8)

= µ+ αj + βk + (αβ)jk + εijk (9)

(10)

The assumptions are that

εij ∼ i.i.d N(0, σ2
e ) (11)

αj ∼ i.i.d N(0, σ2
A) (12)

βk ∼ i.i.d N(0, σ2
B) (13)

(αβ)jk ∼ i.i.d N(0, σ2
AB). (14)

Moreover, there is the assumption that all of the above terms are
independent of each other.
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A Typical Two-Way Model with One Random Effect

A Typical Two-Way Model with One Random Effect

Suppose we were interested in the effect of a type of Study Program on
student learning, but we were also interested in the effect of the school
environment.

We go to a large local school district and select 4 schools at random from
a list of potential participating schools.

Next, we sample 10 student volunteers from each school, and randomly
assign them to two training methods, “Computer” and “Standard.” In this
design, Study Program is Factor A, and School is Factor B.
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A Typical Two-Way Model with One Random Effect Factor B

A Typical Two-Way Model with One Random Effect
Factor B

Consider Factor B (School), and how we might model it. Actually, we
have a choice of models that we might apply to this situation:

1 One model views the 4 selected schools as the only schools of interest.
Since these are the only schools of interest, the effects of school 1, for
example, on learning can be viewed as a fixed quantity to be
estimated. In this model, the school factor, factor B, is a fixed effect.

2 The other model, probably more in line with our substantive goal,
views the schools as simply a sample from a larger population of
interest. In this model, we can make inferences about the entire
population of schools, and school is a random effect.
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A Typical Two-Way Model with One Random Effect Factor A

A Typical Two-Way Model with One Random Effect
Factor A

Factor A, in this study, is Study Program.

There are two study programs, and we are interested in comparing these
two specific programs.

These programs have not been sampled from some population of interest.
Consequently, we treat Factor A as a fixed-effects factor.
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A Typical Two-Way Model with One Random Effect The Basic Model

A Typical Two-Way Model with One Random Effect
The Basic Model

The model, with Factor A fixed and B random, is, for 1 ≤ i ≤ n,
1 ≤ j ≤ a, and 1 ≤ k ≤ b,

Yijk = µjk + εijk (15)

= µ+ αj + βk + (αβ)jk + εijk (16)
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A Typical Two-Way Model with One Random Effect The Basic Model

A Typical Two-Way Model with One Random Effect
The Basic Model

The assumptions are that

εij ∼ i.i.d N(0, σ2
e ) (17)

βk ∼ i.i.d N(0, σ2
B) (18)

(αβ)jk ∼ i.i.d N(0,
a− 1

a
σ2
AB). (19)

Moreover, there are independence assumptions:

1 (αβ)jk are independent of the βk .

2 Different (αβ)jk in different columns are independent, but will be
dependent within column.

3 εijk are independent of βk and (αβ)jk

There are also identification restrictions:

1
∑

j αj = 0

2
∑

j(αβ)jk = 0 ∀k

When testing the fixed main effect, an additional assumption is that of
sphericity across the levels of the fixed factor A. The assumption requires
all pairwise difference between levels to have equal variance.
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A Typical Two-Way Model with One Random Effect Computations and Expected Mean Squares

A Typical Two-Way Model with One Random Effect
Computations and Expected Mean Squares

Again, we compute the sums of squares and mean squares exactly as in
the fixed effects case.

However, the expected mean squares and F tests are now not all the same.

Below is a compact table from the textbook by Maxwell and Delaney,
showing the Expected Mean Squares for two way factorial models with
both effects fixed, both random, and one fixed and one random.

Recall that, although it is not stated in the table, in all models,
E (MSS/AB) = σ2

e .

Examine the table and see if you can determine how to test the null
hypotheses for A, B, and the AB interaction.

The numerators will always be the MS for the effect of interest. The
denominator (“error”) term for a test can change, depending on the model.
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A Typical Two-Way Model with One Random Effect Computations and Expected Mean Squares

A Typical Two-Way Model with One Random Effect
Computations and Expected Mean Squares

  Expected Mean Squares 
CRF-ab Design 

 

 

Effect A fixed 
B fixed 

A fixed 
B random 

A random 
B fixed 

A random 
B random 

A 2 2
e Abn   2 2 2

e A ABnbn   2 2
e Abn   2 2 2

e A ABnbn    

B 2 2
e Ban   2 2

e Ban   2 2 2
e B ABnan   2 2 2

e B ABnan  

AB 2 2
e ABn   2 2

e ABn   2 2
e ABn   2 2

e ABn   

S/AB 2
e  

2
e

2
e

2
e
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A Typical Two-Way Model with One Random Effect Computations and Expected Mean Squares

A Typical Two-Way Model with One Random Effect
Computations and Expected Mean Squares

  Expected Mean Squares 
CRF-ab Design 

 

 

Effect A fixed 
B fixed 

A fixed 
B random 

A random 
B fixed 

A random 
B random 

A 2 2
e Abn   2 2 2

e A ABnbn   2 2
e Abn   2 2 2

e A ABnbn    

B 2 2
e Ban   2 2

e Ban   2 2 2
e B ABnan   2 2 2

e B ABnan  

AB 2 2
e ABn   2 2

e ABn   2 2
e ABn   2 2

e ABn   

S/AB 2
e  

2
e

2
e

2
e

 

From the above, we see that in the design with both factors fixed, our test
construction principle would lead us to test all effects with MSS/AB as the
error term.

or the mixed model with A fixed and B random, the B and AB effects
would be tested with MSS/AB as the error term, but the A effect would be
tested with MSAB as the error term. We’ll work through that in the next
slide, in case this is still giving you difficulties. With A random and B
fixed, the labels are simply reversed.

or the model with both A and B random, both A and B main effects are
tested with MSAB in the denominator error term, while the AB interaction
is tested with MSS/AB as the error term.
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A Typical Two-Way Model with One Random Effect
Computations and Expected Mean Squares

  Expected Mean Squares 
CRF-ab Design 

 

 

Effect A fixed 
B fixed 

A fixed 
B random 

A random 
B fixed 

A random 
B random 

A 2 2
e Abn   2 2 2

e A ABnbn   2 2
e Abn   2 2 2

e A ABnbn    

B 2 2
e Ban   2 2

e Ban   2 2 2
e B ABnan   2 2 2

e B ABnan  

AB 2 2
e ABn   2 2

e ABn   2 2
e ABn   2 2

e ABn   

S/AB 2
e  

2
e

2
e

2
e

 

Suppose we wish to calculate how to do the F test in the mixed model
with factor A fixed and B random. Which mean squares do we use to
perform FA, the F test for the A main effect?

To get the numerator MS , we scan the list of Expected Mean Squares and
find that only MSA has a term involving θ2

A. So MSA will be the
numerator of our F statistic.

Next, we ask what will happen to E (MSA) if the null hypothesis is true.
We see that, under H0 : θ2

A = 0, we have

E (MSA) = σ2
e + bnθ2

A + nσ2
AB = σ2

e + nσ2
AB (20)

Scanning the table of Expected Mean Squares, we see that MSAB has the
same E (MS), and so it will serve as the error term for the F test.
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Two-Way Mixed Model ANOVA: An Example

Two-Way Mixed Model ANOVA: An Example

Maxwell and Delaney (p.481, Table 10.5) present data for a 2-way ANOVA
exploring the effects of Program and School on ACT Score. The data are
in a file called MD10 05.txt.

Reading in the file, and examining the interaction plot, we see definite
signs of a main effect for Program.
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Two-Way Mixed Model ANOVA: An Example

Two-Way Mixed Model ANOVA: An Example

> set.seed(12345)

> two.way <- read.csv("MD10_05.csv")

> attach(two.way)

> interaction.plot(School, Program, Score, col = c("red", "blue"))

18
20

22
24

26
28

School

m
ea

n 
of

  S
co

re

School1 School2 School3 School4

   Program

Standard
Computer
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Two-Way Mixed Model ANOVA: An Example

Two-Way Mixed Model ANOVA: An Example

Unfortunately, unlike some commercial software, R does not currently
possess a facility whereby one can indicate whether an effect is fixed or
random, and have the correct F statistic generated automatically.

Some user intervention is required, although one may easily write a
function to automate the process for simple designs such as a two-way.

Since the computations for the sums of squares and mean squares are
identical for fixed, random, and mixed effects models, we need only
perform the computations the standard way, and then change the F tests
only for those effects with a different error term than the standard
fixed-effects model.

What that boils down to, for a two-way completely randomized factorial
design, is:

1 If the model is mixed, the fixed effect F test is performed using the
interaction mean square as the (denominator) error term, and

2 If the model has random effects for both main effects, then both main
effect F tests are performed using the interaction mean square as the
error term.

We demonstrate the calculations for the current example on the next slide.
Notice how the code performs the standard fixed-effects ANOVA, then
replaces the test for the Program factor with the correct F statistic and
reconstitutes the table.
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Two-Way Mixed Model ANOVA: An Example

Two-Way Mixed Model ANOVA: An Example

> fit <- lm(Score ~ Program * School)

> results <- anova(fit)

> Df <- results$Df

> SumSq <- results$"Sum Sq"

> MeanSq <- results$"Mean Sq"

> Fvalue <- results$"F value"

> Pvalue <- results$"Pr(>F)"

> Error.Term <- MeanSq[3]

> df.error <- Df[3]

> Fvalue[1] <- MeanSq[1]/Error.Term

> Pvalue[1] <- 1 - pf(Fvalue[1], Df[1], df.error)

> Ftable <- cbind(Df, SumSq, MeanSq, Fvalue, Pvalue)

> rownames(Ftable) <- c("Program", "School", "Program:School", "Residuals")
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Two-Way Mixed Model ANOVA: An Example

Two-Way Mixed Model ANOVA: An Example

> Ftable

Df SumSq MeanSq Fvalue Pvalue

Program 1 360 360.00000 13.500000 0.03489698

School 3 100 33.33333 1.845444 0.15880542

Program:School 3 80 26.66667 1.476355 0.23951513

Residuals 32 578 18.06250 NA NA
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