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Despite the widespread use of exploratory factor analysis in psychological research,
researchers often make questionable decisions when conducting these analyses.
This article reviews the major design and analytical decisions that must be made
when conducting a factor analysis and notes that each of these decisions has
important consequences for the obtained results. Recommendations that have been
made in the methodological literature are discussed. Analyses of 3 existing em-
pirical data sets are used to illustrate how questionable decisions in conducting
factor analyses can yield problematic results. The article presents a survey of 2
prominent journals that suggests that researchers routinely conduct analyses using
such questionable methods. The implications of these practices for psychological
research are discussed, and the reasons for current practices are reviewed.

Since its initial development nearly a century ago
(Spearman, 1904, 1927), exploratory factor analysis
(EFA) has been one of the most widely used statistical
procedures in psychological research. Despite this

long history and wide application, the use of factor
analysis in psychological research has often been
criticized. Some critics have raised concerns about
fundamental limitations of factor analysis for contrib-
uting to theory development (e.g., Gould, 1981; Hills,
1977; Overall, 1964). For instance, Armstrong (1967),
in an article entitled "Derivation of theory by means

of factor analysis or Tom Swift and his electric factor
analysis machine," argued that factor analysis had
limited utility for aiding in the development of theory,
because it could not be relied on to provide meaning-
ful insights into data.1 He attempted to demonstrate
this point by creating artificial data with a known
structure and then ostensibly showing that EFA failed
to accurately represent the structure.2 Other critics
have not challenged the fundamental utility of EFA
but have instead criticized the manner in which it is
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1 The name Tom Swift refers to a character in a popular
series of juvenile science fiction novels published in the
1960s. In each novel, Tom Swift makes use of futuristic
devices with near-miraculous powers. Armstrong's refer-
ence to this character in the title of his article highlighted
what he regarded as the naive belief by researchers in fun-
damental utility of EFA.

2 It is important to note that Armstrong (1967) was not
the first person to examine the effectiveness of EFA proce-
dures using data sets with a known underlying structure
(e.g., see Thurstone, 1947; Cattell & Dickman, 1962; Cattell
& Sullivan, 1962; Cattell & Jaspers, 1967). Interestingly, in
these other cases, the authors concluded that appropriate
EFA procedures were reasonably effective in revealing the
known underlying structure of the data.
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sometimes applied (e.g., Comrey, 1978; Ford, Mac-
Callum, & Tail, 1986; Gorsuch, 1983; McNemar,
1951; Skinner, 1980). In this article, we primarily
address the latter issue. That is, we explore the man-
ner in which factor analysis is applied in psychologi-
cal research and evaluate the soundness of current
practices. However, we contend that these two issues
are intertwined. The utility of factor analysis for
theory development is dependent on the manner in
which it is implemented (see Cattell, 1978; Comrey,
1978). Furthermore, we suggest that some critics who
have questioned the fundamental value of factor
analysis have not been sufficiently sensitive to this
relationship.

We begin our discussion by reviewing some of the
major methodological decisions that researchers must
make when conducting a factor analysis. Next, we
illustrate with published data sets how poor choices
when making these decisions can substantially distort
the results. We then turn our attention to the extent to
which current use of factor analysis reflects sound
practice-. We conclude with discussions of the impli-
cations of current factor analytic practices for psycho-
logical theory and reasons for the prevalence of cer-
tain practices.

Methodological Issues in the Implementation of
Factor Analysis

Perhaps more than any other commonly used sta-
tistical method, EFA requires a researcher to make a
number of important decisions with respect to how the
analysis is performed (see Finch & West. 1997). Spe-
cifically, there are at least five major methodological
issues that a researcher should consider when con-
ducting a factor analysis. First, he or she must decide
what variables to include in the study and the size and
nature of the sample on which the study will be based.
Second, a researcher must determine if EFA is the
most appropriate form of analysis given the goals of
the research project. Third, assuming that EFA is ap-
propriate, a specific procedure to fit the model to the
data must be selected. Fourth, the researcher must
decide how many factors should be included in the
model. Finally, it is usually necessary for a researcher
to select a method for rotating the initial factor ana-
lytic solution to a final solution that can be more
readily interpreted. Each of these decisions can have
important consequences for the results obtained (see
Armstrong & Soelberg, 1968; Cattell, 1978; Comrey,
1978; Ford et al., 1986; MacCallum, 1983; MacCal-

lum, Widaman, Zhang, & Hong, 1999; Velicer &
Fava, 1998; Weiss, 1976). To the extent that a re-
searcher makes poor decisions, the analysis is more
likely to provide misleading results. However, re-
searchers often appear to be unaware of the issues
involved in these decisions.

Decisions in Conducting an EFA

Study design. As with any statistical procedure,
the utility of the results obtained in EFA is in large
part determined by the soundness of the design of the
study from which the data are collected. Within the
context of EFA, one design issue that is especially
important is what measured variables to include in the
study (Cattell, 1978). If a researcher inadequately
samples measured variables from the domain of in-
terest, he or she may fail to uncover important com-
mon factors. Conversely, if measured variables irrel-
evant to the domain of interest are included, then
spurious common factors might emerge or true com-
mon factors might be obscured. Therefore, research-
ers should carefully define their domain of interest
and specify sound guidelines for the selection of mea-
sured variables.

Research suggests that EFA procedures provide
more accurate results when each common factor is
represented by multiple measured variables in the
analysis (i.e., when common factors are "overdeter-
mined"; MacCallum et al., 1999; see also Velicer &
Fava, 1998). Methodologists have recommended that
at least three to five measured variables representing
each common factor be included in a study (MacCal-
lum et al., 1999; Velicer & Fava, 1998). Thus, when
designing studies for which EFA is likely to be used,
a researcher should consider the nature and number of
common factors he or she expects might emerge. The
total number of measured variables included should
be at least 3 to 5 times the number of expected com-
mon factors, and the selected variables should include
multiple variables likely to be influenced by each of
the common factors. Alternatively, in cases in which
there is little or no basis to anticipate the number and
nature of common factors, a researcher should attempt
to delineate as comprehensively as possible the popu-
lation of measured variables for the domain of inter-
est. He or she should then include in the study a
sample of these measured variables that is as large as
feasible (see Cattell, 1978).

Sound selection of measured variables also requires
consideration of psychometric properties of measures.
When EFA is conducted on measured variables with
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low communalities (i.e., variables for which the com-
mon factors explain little variance), substantial distor-
tion in results can occur (MacCallum et al., 1999;
Velicer & Fava, 1998). There are a number of reasons
why communalities for measured variables might be
low. One obvious reason is low reliability. As ex-
plained later, variance due to random error cannot, by
definition, be explained by common factors. Because
of this, variables with low reliability will have low
communalities and thus should be avoided. A second
reason why a variable might have a low communality
is that the variable is unrelated to the domain of in-
terest and thus shares little in common with other
measured variables in that domain. Therefore, to the
extent such information is available, a researcher
should consider the validity (e.g., face validity, con-
vergent validity) of measured variables when select-
ing items to include in the analysis.

A second important design decision is the selection
of the sample. A researcher must determine how large
the sample should be and how that sample will be
selected from the population of interest. Methodolo-
gists have proposed a host of rough guidelines for
estimating an adequate sample size for an EFA. Most
of these guidelines involve determining sample size
based on the number of measured variables included
in the analysis—with more measured variables requir-
ing larger sample sizes. Sometimes such guidelines
also specify a minimum necessary sample size regard-
less of the number of measured variables.

Unfortunately, there are serious drawbacks to such
guidelines. One problem is that these recommenda-
tions vary dramatically. For instance, Gorsuch (1983)
suggested a ratio of 5 participants per measured vari-
able and that the sample size never be less than 100.
In contrast, Nunnally (1978) and Everitt (1975)
proposed ratios of 10 to 1. More important, recent
research has suggested that such guidelines are not
sufficiently sensitive to a variety of important char-
acteristics of the data (MacCallum et al., 1999;
Velicer & Fava, 1998). The primary limitation of such
guidelines is that adequate sample size is not a func-
tion of the number of measured variables per se but is
instead influenced by the extent to which factors are
overdetermined and the level of the communalities of
the measured variables. When each common factor is
overdetermined (i.e., at least three or four measured
variables represent each common factor) and the com-
munalities are high (i.e., an average of .70 or higher),
accurate estimates of population parameters can be
obtained with samples as small as 100 (MacCallum et

al., 1999). However, under more moderate conditions
a sample size of at least 200 might be needed; when
these conditions are poor it is possible that samples as
large as 400 to 800 might not be sufficient.

It is worth noting that obtaining parameter esti-
mates that closely approximate population values is
only one criterion a researcher might consider when
determining sample size. In some situations, addi-
tional concerns might also play a role. Most notably,
when EFA involves the testing of formal hypotheses
regarding model fit or parameter estimates (as is
sometimes done in maximum likelihood [ML] EFA),
statistical power might also be considered. A re-
searcher could specify a hypothesis of interest, a de-
sired level of power, and an assumed population value
for model fit. The sample size necessary to achieve
these objectives can then be calculated (see MacCal-
lum, Browne, & Sugawara, 1996).

Researchers should also consider the nature of the
sample on which the study is based. Psychologists
often select samples based on convenience. In many
cases, this practice will not pose a problem. However,
if the sample is considerably more homogeneous than
the population on the common factors, this can lead to
restriction of range in the measures, thereby attenuat-
ing correlations among variables. This attenuation can
result in falsely low estimates of factor loadings and
correlations among factors (see Comrey & Lee, 1992;
Gorsuch, 1983; Tucker & MacCallum, 1997). Addi-
tionally, selection biases related to a single measured
variable in the analysis can also distort results (Tucker
& MacCallum, 1997). For these reasons, researchers
should consider the nature of the measured variables
they are investigating and the manner in which their
sample is selected. Overly homogeneous samples and
samples whose selection is related to measured vari-
ables in the analysis should be avoided. Thus, when
there is a substantial basis to expect that convenience
samples will not be appropriate, a researcher should
consider obtaining a sample representative of the
population of interest. Alternatively, a researcher
might wish to select a sample to maximize variance
on measured variables relevant to the constructs of
interest and minimize variance on measured variables
irrelevant to the constructs of interest (see Cattell,
1978).

Determining whether EFA is appropriate. The
primary purpose of EFA is to arrive at a more parsi-
monious conceptual understanding of a set of mea-
sured variables by determining the number and nature
of common factors needed to account for the pattern
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of correlations among the measured variables. That is,
EFA is used when a researcher wishes to identify a set
of latent constructs underlying a battery of measured
variables. Before using EFA. a researcher should
carefuily consider if this is a goal of the research
projec.

In reaching this decision, it is important to recog-
nize that the goal of identifying latent constructs (i.e.,
understanding the structure of correlations among
measured variables) is different from that of data re-
duction. Data reduction involves taking scores on a
large set of measured variables and reducing them to
scores on a smaller set of composite variables that
retain as much information from the original variables
as possible. Data reduction does not attempt to model
the structure of correlations among the original vari-
ables. This distinction is important, because different
methods have been designed to achieve these two
objectives. If the goal is to arrive at a parsimonious
representation of the associations among measured
variables, EFA can be an appropriate form of analysis.
If the goal is data reduction, principal components
analysis (PCA) is more appropriate. Many researchers
mistakenly believe that PCA is a type of EFA when in
fact these procedures are different statistical methods
designed to achieve different objectives (for a discus-
sion of the distinction, see Bentler & Kano, 1990;
Bookstein, 1990; Gorsuch, 1990: Loehlin, 1990;
McArdie, 1990; Mulaik, 1990; Rozeboom. 1990;
Schonemann, 1990; Steiger, 1990; Velicer & Jackson,
1990a, 1990b; Widaman, 1990).

EFA is based on the common factor model (Thur-
stone, 1947). This model postulates that each mea-
sured variable in a battery of measured variables is a
linear function of one or more common factors and
one unique factor. Common factors are unobservable
latent variables that influence more than one mea-
sured variable in a battery and are presumed to ac-
count for the correlations (covariances) among the
measured variables (i.e., two measured variables are
assumed to be correlated, because they are influenced
by one ;>r more of the same common factors). Unique
factors are latent variables that influence only one
measured variable in a battery and do not account for
correlations among measured variables. Unique fac-
tors are assumed to have two components: a specific
factor component (i.e., systematic latent factors that
influence only one measured variable) and an error of
measurement component (i.e., unreliability in a mea-
sured variable). The goal of the common factor model
is to understand the structure of correlations among

measured variables by estimating the pattern of rela-
tions between the common factor(s) and each of the
measured variables (i.e., as indexed by factor load-
ings).

In contrast, PCA does not differentiate between
common and unique variance. Rather, this approach
defines each measured variable as a linear function of
principal components, with no separate representation
of unique variance. Mathematically, these principal
components can be defined as linear composites of the
original measured variables and thus contain both
common and unique variance. Therefore, principal
components are not latent variables, and because of
this it is not conceptually correct to equate them with
common factors (although in practice researchers of-
ten do so). Furthermore, whereas the goal of common
factor analysis is to explain correlations among mea-
sured variables, the goal of PCA is to account for
variance in the measured variables. That is, the ob-
jective of PCA is to determine the linear combinations
of the measured variables that retain as much infor-
mation from the original measured variables as pos-
sible. Thus, although PCA is often referred to and
used as a method of factor analysis, it is not factor
analysis at all.

Nevertheless, some methodologists have argued
that PCA is a reasonable substitute for analyses of
common factors and might even be superior (e.g., see
Velicer & Jackson, 1990a, 1990b). They noted that
PCA is computationally simpler than common factor
analysis and therefore requires less computer memory
and processing time (e.g., Velicer & Jackson, 1990a).
They also argued that the two approaches generally
produce very similar results (e.g.. Arrindell & van der
Ende, 1985; Velicer, 1977; Velicer & Jackson, 1990a;
Velicer, Peacock, & Jackson, 1982). Also, they noted
that common factor analysis procedures sometimes
produce "Heywood cases" (e.g., Velicer & Jackson,
1990a)—situations in which a communality for a
measured variable (i.e., the proportion of variance in
the measured variable accounted for by the common
factors) is estimated to be at 1 or greater than 1. Be-
cause it is impossible to account for more than 100%
of the variance in a variable, such an estimate is po-
tentially problematic. Finally, advocates of PCA note
that it is determinate, whereas the common factor
model is not (e.g., Steiger, 1979, 1990; Velicer &
Jackson, 1990a). That is, it is possible to compute an
individual person's score on a principal component,
whereas it is not possible to do so for a common
factor.
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There are, however, reasons to question these ar-
guments. Advances in the speed and memory capa-
bilities of computers have made the advantage of the
computational simplicity of PCA trivial. Also, al-
though PC A and EFA do often produce similar re-
sults, there are some contexts in which this is not the
case (e.g., see Bentler & Kano, 1990; Borgatta,
Kercher, & Stull, 1986; Gorsuch, 1988, 1990; Hub-
bard & Allen, 1987; McArdle, 1990; Snook & Gor-
such, 1989; Tucker, Koopman, & Linn, 1969; Wida-
man, 1990, 1993). Differences in results are most
likely when communalities are low (e.g., .40) and
there are a modest number of measured variables
[e.g., three) per factor (Widaman, 1993). Furthermore,
when the data correspond to assumptions of the com-
mon factor model, EFA produces more accurate re-
sults than PCA (e.g., McArdle, 1990; Snook & Gor-
such, 1989; Tucker et al., 1969; Widaman, 1990,
1993). In contrast, when the data are relatively con-
sistent with the assumptions of PCA (e.g., l i t t le
unique variance present in measured variables), ex-
traction of common factors does as well as extraction
of principal components (e.g., see Gorsuch, 1990;
McArdle, 1990; Velicer et a!., 1982).

The occasional occurrence of Heywood cases
should also not be regarded as a flaw of common
factor analysis. Heywood cases often indicate that a
misspecified model has been fit to the data or that the
data violate assumptions of the common factor model
(van Driel, 1978). Thus, Heywood cases can have
diagnostic value (Velicer & Jackson, 1990a). In con-
trast, because such cases do not occur in PCA, such
problems are not solved but simply go unnoticed
; McArdle, 1990).3

Indeterminacy of individual factor scores in the
common factor model need not be a problem. In most
applications of EFA, this issue is irrelevant in that the
objective is to identify common factors that account
ror the structure of the correlations among the mea-
sured variables. This goal does not require the com-
putation of factor scores but rather only factor load-
ings and factor intercorrelations (McArdle, 1990). In
those situations where factor scores might be of in-
terest, researchers usually obtain scores for the pur-
pose of assessing correlations of factors with other
variables, or using factors as independent variables or
dependent variables in regression models. However,
the development of structural equation modeling
makes it unnecessary to estimate factor scores to ob-
tain such information. One can use structural equation
modeling to specify a model with factors as corre-

lates, predictors, or consequences of other variables
and obtain estimates of the relevant parameters with-
out ever estimating factor scores. Additionally, recent
developments have provided useful nonstructural
equation modeling procedures for estimating the cor-
relations between factors and other variables without
the need to compute factor scores (Gorsuch, 1997).

Finally, advocates of common factor analysis note
that it has certain advantages over PCA when the goal
is to identify latent constructs. They argue that most
measures used in psychological research contain some
random error. Because EFA procedures reflect a rec-
ognition of this fact, whereas PCA does not, the com-
mon factor model is a more realistic model of the
structure or correlations (e.g., see Bentler & Kano,
1990; Gorsuch, 1973; Loehlin, 1990). Additionally,
the common factor model is testable, whereas the
PCA model is not (e.g., see Bentler & Kano, 1990;
McArdle, 1990). The common factor model specifies
certain hypotheses about the data. Thus, it can be fit to
data and the model rejected if the fit is poor. In con-
trast, because PCA does not involve a specific hy-
pothesis to be tested, it does not provide information
on which one could base a decision to reject the
"model."

Therefore, there are clear conceptual distinctions
between PCA and EFA. Although these approaches
often produce similar results, this is not true in certain
contexts. When the goal of the analysis is to identify
latent constructs underlying measured variables, it is
more sensible to use EFA than PCA (see Cattell,
1978; Gorsuch, 1983; McDonald, 1985; Mulaik,
1972).

Assuming that identifying latent variables that ac-
count for the correlations among measured variables
is the goal of the research project, a researcher must
then decide if an exploratory or confirmatory ap-
proach will be used. Both EFA and confirmatory fac-
tor analysis (CFA) are based on the common factor
model, and both seek to represent the structure of
correlations among measured variables using a rela-

1 Furthermore, there might be some cases in which a
Heywood case would not represent a misspecified model
and might not be problematic. For example, circumstances
in which population parameters are close to logical bound-
aries (e.g., if true communalities are close to 1.0) could
produce Heywood cases simply because of expected vari-
ability in parameter estimates resulting from sampling error
(van Driel, 1978).
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lively small set of latent variables. However, EFA is
primarily a data-driven approach. No a priori number
of common factors is specified and few restrictions
are placed on the patterns of relations between the
common factors and the measured variables (i.e., the
factor loadings). EFA provides procedures for deter-
mining an appropriate number of factors and the pat-
tern of factor loadings primarily from the data. In
contrast, CFA requires a researcher to specify a spe-
cific number of factors as well as to specify the pat-
tern of zero and nonzero loadings of the measured
variables on the common factors. Alternatively, a re-
searcher might specify a priori a small set of compet-
ing models postulating differing numbers of factors,
different patterns of factor loadings, or both.

In situations in which a researcher has relatively
little theoretical or empirical basis to make strong
assumptions about how many common factors exist or
what specific measured variables these common fac-
tors are likely to influence, EFA is probably a more
sensible approach than CFA. EFA is likely to be more
desirable in these situations, because the number of
plausible alternative models might be so large that it
would be impractical to specify and test each one in
CFA. Additionally, when a strong basis does not exist
for identifying a single model or a few specific com-
peting models, it is quite possible that a researcher
might fail to identify a number of plausible models.
Therefore, in these contexts, the data-driven approach
of EFA seems advisable.

However, when there is sufficient theoretical and
empirical basis for a researcher to specify the model
or small subset of models that is the most plausible,
CFA is likely to be a better approach. This is because
CFA allows for focused testing of specific hypotheses
about the data (e.g., see Finch & West, 1997; Wege-
ner & Fabrigar, in press). Also, the a priori nature of
CFA makes it less likely that a researcher will capi-
talize on chance characteristics in the data.

It is also often useful to use EFA and CFA in con-
junction with one another. An EFA can be conducted
in an initial study to provide a basis for specifying a
CFA model in a subsequent study. Alternatively, if
the sample size in a single study is sufficiently large,
the sample could be randomly split in half. An EFA
could then be conducted on one half of the data pro-
viding the basis for specifying a CFA model that can
be fit to the other half of the data.

Choice of model-fitting procedure. If EFA is the
most appropriate form of analysis, it is then necessary
to decide what procedure will be used to fit the com-

mon factor model to the data. A number of model-
fitting methods (i.e., factor-extraction procedures) are
available. Most widely used among these are ML,
principal factors with prior estimation of communali-
ties, and iterative principal factors. These are different
methods for estimating the parameters (factor load-
ings and unique variances) of the same model, the
common factor model.4

Although these procedures fit the same model, each
method does have certain advantages and disadvan-
tages. The primary advantage of ML is that it allows
for the computation of a wide range of indexes of the
goodness of fit of the model. ML also permits statis-
tical significance testing of factor loadings and corre-
lations among factors and the computation of confi-
dence intervals for these parameters (Cudeck &
O'Dell, 1994). The primary limitation of ML estima-
tion is its assumption of multivariate normality. When
this assumption is severely violated, this procedure
can produce distorted results (Curran, West, & Finch,
1996; Hu, Bentler, & Kano, 1992). On the other hand,
principal factors methods (both iterated and noniter-
ated) have the advantage of entailing no distributional
assumptions. Principal factors are also less likely than
ML to produce improper solutions (i.e., a solution
with a Heywood case or a solution that fails to con-
verge on a final set of parameter estimates; Finch &
West, 1997). The major drawback of the principal
factor methods is that they provide a much more lim-
ited range of goodness-of-fit indexes and generally do
not allow for computation of confidence intervals and
significance tests. Regardless of these differences,
when the common factor model holds reasonably well
in the population and severe violations of distribu-
tional assumptions are not present, solutions provided
by these methods are usually very similar.

Selecting the number of factors. Determining how
many factors to include in the model requires the
researcher to balance the need for parsimony (i.e., a
model with relatively few common factors) against
the need for plausibility (i.e., a model with a sufficient
number of common factors to adequately account for

4 Although the common factor model makes a further
conceptual distinction by decomposing unique variance into
specific variance and error variance, methods of fitting the
common factor model allow for estimates of the amount of
unique variance only and do not provide separate estimates
of specific variance and error variance.
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the correlations among measured variables). In other
words, the goal of the researcher is to determine the
number of "major" factors underlying a battery of
measures. Importantly, errors in selection of the num-
ber of factors in a model can have a substantial effect
on the results obtained (e.g., Comrey. 1978; Fava &
Velicer, 1992; Levonian & Comrey, 1966; Wood, Ta-
taryn, & Gorsuch, 1996).

Traditionally, methodologists have regarded speci-
fying too few factors in a model (i.e., underfactoring)
as a much more severe error than specifying too many
factors (i.e., overfactoring; see Cattell, 1978; Rum-
mel, 1970; Thurstone, 1947). Empirical research has
generally supported this notion. When too few factors
are included in a model, substantial error is likely
(Fava & Velicer, 1992; Wood et al., 1996). Measured
variables that load on factors not included in the
model can falsely load on factors included in the
model, and poor estimates of the factor loadings can
he obtained for measured variables that do actually
load on the factors included in the model (Wood et al.,
1996). Such distortions can result in rotated solutions
in which two common factors are combined into a
single common factor (thereby obscuring the true fac-
i.or structure) and in solutions with complex patterns
of factor loadings that are difficult to interpret (see
Comrey. 1978).

Empirical research suggests that overfactoring in-
troduces much less error to factor loading estimates
ihan underfactoring (Fava & Velicer. 1992; Wood et
..;!., 1996). Such models often result in rotated solu-
i ions in which the major factors are accurately repre-
sented and the additional factors have no measured
variables that load substantially on them or have only
a single measured variable that loads substantially on
each additional factor. Nonetheless, overfactoring
should be avoided (see Comrey, 1978; Comrey &
Lee, 1992). Solutions with too many factors might
prompt a researcher to postulate the existence of con-
s tracts with little theoretical value and thereby de-
velop unnecessarily complex theories. Additionally,
overfactoring can accentuate poor decisions made at
other steps in a factor analysis. For example, PCA
tends to produce loadings that are larger than factor
loadings (see Snook & Gorsuch, 1989; Widaman.
1993). Thus, solutions using this approach can some-
times make minor components appear to be major
components (Wood et al., 1996).

Given these consequences, it is not surprising that
an extensive methodological literature has developed
exploring the issue of determining the optimal number

of factors. A number of procedures for answering this
question have been proposed. Perhaps the best known
of these procedures is the Kaiser criterion of comput-
ing the eigenvalues for the correlation matrix to de-
termine how many of these eigenvalues are greater
than 1 (for discussion of the nature of eigenvalues, see
Gorsuch, 1983). This number is then used as the num-
ber of factors. Although this procedure is appealing
for its simplicity and objectivity, the approach has
significant problems. First, it is often misapplied by
referring to the eigenvalues of the correlation matrix
with communality estimates in the diagonal (i.e., the
reduced correlation matrix) rather than eigenvalues of
the correlation matrix with unities in the diagonal
(i.e., the unreduced correlation matrix; see Guttman.
1954; Kaiser, 1960). Application of this rule to the
eigenvalues of the reduced correlation matrix is an
erroneous procedure (Gorsuch, 1980; Horn, 1969).
Second, as with any mechanical rule, the procedure
can to some extent be arbitrary. For instance, it is not
really meaningful to claim that a common factor with
an eigenvalue of 1.01 is a "major" factor whereas a
common factor with an eigenvalue of 0.99 is not.
Finally, in numerous studies involving both principal
components and common factors, this procedure has
been demonstrated to lead to substantial overfactoring
and occasionally to underfactoring (Cattell & Jaspers,
1967; Cattell & Vogelmann, 1977; Hakstian, Rogers.
& Cattell, 1982; Linn, 1968; Tucker et al., 1969;
Zwick & Velicer, 1982, 1986). In fact, we know of no
study of this rule that shows it to work well.

Another widely known approach for determining
the number of factors is the "scree test" (Cattell, 1966;
Cattell & Jaspers, 1967). In this procedure, the eig-
envalues of the correlation matrix (or the reduced cor-
relation matrix) are computed and then plotted in or-
der of descending values. This graph is then examined
to identify the last substantial drop in the magnitude
of the eigenvalues. A model with the same number of
common factors as the number of eigenvalues prior to
this last substantial drop is then fit to the data. This
procedure is often used with eigenvalues from the
unreduced correlation matrix. However, when the
goal is to identify common factors, it is more concep-
tually sensible to examine the plot of eigenvalues
from the reduced correlation matrix, because this ma-
trix more directly corresponds to the common factor
model. Regardless of which matrix is used, this pro-
cedure has been criticized (e.g.. Kaiser. 1970) because
of its subjectivity (i.e., there is no clear objective defi-
nition of what constitutes a "substantial" drop in mag-
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nitude). Additionally, sometimes the obtained pattern
of eigenvalues is ambiguous in that no clear substan-
tial drop may be present. However, when strong com-
mon faciors are present in data, studies indicate that
this procedure functions reasonably well (Cattell &
Vogelmann. 1977; Hakstian et al., 1982: Tucker et al.,
1969).

A third factor-number procedure that has been in-
vestigated in the methodological literature is parallel
analysis (Horn, 1965; Humphreys & Ilgen, 1969;
Humphreys & Montanelli, 1975; Montanelli & Hum-
phreys, 1976). This approach is based on a compari-
son of eigenvalues obtained from sample data to eig-
envalues one would expect to obtain from completely
random data (i.e., the predicted means of eigenvalues
producec by repeated sets of random data). Suppose a
set of measured variables observed in a given sample
depends on m major common factors. Parallel analy-
sis is based on the notion that the m largest sample
eigenvalues of the reduced correlation matrix should
be larger than the m largest expected values of eigen-
values obtained from repeated corresponding sets of
random data (based on the same sample size and num-
ber of variables). The eigenvalues that would be ex-
pected from random data are then compared with the
eigenvalues actually produced by the data, and a
model is specified with the same number of common
factors as real eigenvalues that are greater than the
eigenvalues expected from random data. Like other
objective mechanical rules, this procedure can some-
times be arbitrary in that a factor just meeting the
criterion is retained, whereas a factor falling just be-
low the criterion is ignored. This procedure is also not
available in major statistical programs. Nonetheless,
simulation research suggests parallel analysis func-
tions fairly well (Humphreys & Montanelli, 1975).
Parallel analysis methods have also been developed
for use in components analysis and found to function
well in ;his context (Allen & Hubbard. 1986: Lauten-
schlager, 1989; Longman, Cota, Holden, & Fekken,
1989; Zwick & Velicer, 1986).

The methods described to this point for determining
the number of factors to retain involve analysis of
eigenvalues obtained in principal factors or PCA. Al-
though >uch methods of factoring are widely used, the
ML method of factor extraction is becoming increas-
ingly popular. The ML method has a more formal
statistical foundation than the principal factors meth-
ods and thus provides more capabilities for statistical
inference, such as significance testing and determina-
tion of confidence intervals. These capabilities allow

a researcher to adopt a somewhat different approach
to determining the optimal number of factors.

One can conceptualize the number-of-factors issue
as choosing the most appropriate model from a series
of alternative factor analysis models that differ in their
complexity (i.e., the number of factors). The objective
is to select a model that explains the data substantially
better than simpler alternative models (i.e., models
with fewer factors) but does as well or nearly as well
as more complex alternative models (i.e., models with
more factors). Because factor analysis is a special
case of structural equation modeling, many of the pro-
cedures used in structural equation modeling for
model selection can be applied to EFA. That is, the
use of ML estimation for EFA introduces a vast array
of goodness-of-fit information that can be used to
determine the appropriate number of factors (see
Browne & Cudeck, 1992; Hu & Bentler, 1998; Marsh,
Balla, & McDonald, 1988; Mulaik et al., 1989). These
fit measures, which are intended to assess the degree
to which a given model provides an approximation of
observed correlations or covariances, can be applied
to the number-of-factors problem. The general proce-
dure is to fit models with a range of numbers of fac-
tors, beginning with zero, and increasing through
some maximally interesting number. Fit measures for
each model can then be evaluated, and a decision can
be made as to the appropriate number of factors to
retain. The desired model is that which constitutes a
substantial improvement in fit over a model with one
fewer factor but for which a model with one more
factor provides little if any improvement in fit.5

One common statistic for assessing fit in ML factor
analysis solutions is the likelihood ratio statistic
(Lawley, 1940). If N is sufficiently large and the dis-
tributional assumptions underlying ML estimation are
adequately satisfied, the likelihood ratio statistic ap-
proximately follows a chi-square distribution if the
specified number of factors is correct in the popula-

s Ideally, the preferred model should not just fit the data
substantially better than simpler models and as well as more
complex models. The preferred model should also fit the
data reasonably well in an absolute sense. When this is not
the case, a researcher should exercise some caution in in-
terpreting the results. A preferred model that fits the data
poorly might do so, because the data do not correspond to
assumptions of the common factor model. Alternatively, it
might suggest the existence of numerous minor common
factors.
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tion. Thus, this statistic can be used to test the null
hypothesis that the model holds exactly in the popu-
lation with a given number of common factors. This
test can be applied to a series of numbers of factors,
beginning with zero and continuing until a nonsignif-
icant test statistic is obtained, indicating that the com-
mon factor model with the corresponding number of
factors is not rejected as a correct model in the popu-
lation. Although this procedure is intuitively appeal-
ing in that it is based on a clear statistical rationale, it
is susceptible to serious problems. Most importantly,
it is highly influenced by sample size. When N is
large, even trivial discrepancies between the model
and the data are likely to give rise to rejection of the
model with any reasonable number of factors (Haks-
tian et al., 1982; M. L. Harris & Harris, 1971; Hum-
phreys & Montanelli, 1975; MacCallum, 1990). In
situations where N is small, even large discrepancies
between the model and the data may not be statisti-
cally significant, thereby leading to underfactoring
(Humphreys & Montanelli, 1975). In addition, the use
of the likelihood ratio test is problematic, because the
null hypothesis of perfect fit is an unrealistic standard
in that all models are approximations of reality
(Browne & Cudeck, 1992; Cudeck & Henly, 1991;
MacCallum, 1990). The realistic goal in factor analy-
sis is to obtain a parsinomious solution that provides a
good approximation to the real world; thus, the hypoth-
esis of perfect fit is not generally of empirical interest.

Because of these problems, methodologists have
developed an array of alternative "descriptive" mea-
sures of fit. These developments began with the work
of Tucker and Lewis (1973), who proposed a "reli-
ability coefficient" for ML factor analysis solutions,
and have continued through the present day. Our view
is that developments reviewed and illustrated by
lirowne and Cudeck (1992) provide a promising ap-
nroach for assessing fit of these models. Browne and
Cudeck focused on the Root Mean Square Error of
Approximation (RMSEA) fit index (Steiger & Lind,
1980) and the Expected Cross-Validation Index

i ECVI; Browne & Cudeck, 1989) and illustrated their
use for determining the number of factors in EFA.
RMSEA is an estimate of the discrepancy between the
model and the data per degree of freedom for the
model. It has been suggested that values less than 0.05
constitute good fit, values in the 0.05 to 0.08 range
acceptable fit, values in the 0.08 to 0.10 range mar-
ginal fit, and values greater than 0.10 poor fit (see
Browne & Cudeck, 1992; Steiger, 1989).6 ECVI, on
the other hand, is an estimate of how well the solution

obtained from one sample will generalize to other
samples. Although no guidelines exist for interpreting
ECVI in absolute terms, it is useful for relative com-
parisons among alternative models. The smaller the
value of ECVI, the better the expected cross-
validation of the model. An important property of
ECVI discussed by Cudeck and Henly (1991) and
illustrated by Browne and Cudeck (1992) is that it is
sensitive to sample size. ECVI will tend to support the
retention of simpler models (fewer factors) when N is
small and more complex models (more factors) when
N is large. One can think of ECVI as addressing the
following question; Based on the available data, for
how many factors can we obtain accurate and gener-
alizable parameter estimates?

A major advantage of both these indexes is the
availability of confidence intervals. Thus, a researcher
can compare the point estimates and corresponding
confidence intervals of these fit indexes for a series of
models with varying numbers of factors. A model can
be selected that shows fit that is substantially better
than simpler models and fit that is comparable to that
of more complex models. Of course, the logic of the
approach illustrated by Browne and Cudeck (1992) of
using RMSEA and ECVI to determine the number of
factors in EFA can be extended to other descriptive fit
indexes. Thus, a researcher might choose to examine
additional indexes of model fit when determining the
number of factors (for a recent evaluation of fit in-
dexes, see Hu & Bentler, 1998).

Although the use of RMSEA, ECVI, and other de-
scriptive measures of model fit has yet to be exten-
sively tested within the context of determining the
number of factors in EFA, there is a compelling logic
to this approach. Furthermore, many of these indexes
have been tested within the context of more general
covariance structure models. Thus, users of ML factor
analysis would do well to consider the use of these fit
indexes when determining the number of factors to
retain.

In summary, a number of procedures exist to de-
termine the appropriate number of common factors.7

6 Although these guidelines for RMSEA are generally
accepted, it is of course possible that subsequent research
might suggest modifications.

7 One method that has been found to perform well in
determining the number of principal components to retain is
the minimum average partial procedure (Velicer, 1976;
Zwick & Velicer, 1982, 1986). We do not discuss this pro-
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Some of these procedures are highly problematic (i.e.,
eigenvalues greater than 1, the likelihood ratio statis-
tic), whereas others are likely to perform reasonably
well s'. least under a range of conditions (e.g., scree
test, parallel analysis, descriptive indexes of model fit
such as RMSEA). However, even the best procedures
are not infallible. Furthermore, it is important to re-
member that the decision of how many factors to
include in a model is a substantive issue as well as a
statistical issue. A model that fails to produce a ro-
tated -olution that is interpretable and theoretically
sensible has little value. Therefore, a researcher
should always consider relevant theory and previous
research when determining the appropriate number of
factors to retain. It should also be noted that because
any individual data set is likely to have its own idio-
syncrasies, decisions regarding the appropriate num-
ber of factors can be further improved by examining
the replicability of the decision over multiple data sets
(Catteil, 1978). When a given number of factors for a
battery of measured variables is shown to be appro-
priate in more than one data set (e.g., sensible rules
for determining the number of factors give similar
results, rotated solutions produce similar interpretable
patterns of factor loadings), a researcher can be more
confident that the optimal number of factors has been
extracled.

Factor rotation. For any given solution with two
or more factors (or principal components), there exists
an infinite number of alternative orientations of the
factors in multidimensional space that will explain the
data equally well. This means that EFA models with
more than one factor do not have a unique solution.
Therefore, a researcher must select a single solution
from among the infinite number of equally fitting so-
lutions.

The criterion most commonly used for selecting
among solutions in EFA is the property of simple

cedure, because it is a method for use with principal com-
ponents and has not been developed for use with common
factors. Another approach to determining the number of
components is to examine the comparability of component
scores across split halves of a sample (Everett, 1983). Un-
fortunately, formal approaches for determining the number
of common factors based on the stability of common factors
have nor been extensively developed and tested. Nonethe-
less, approaches based on this logic seem like a promising
direction for future research. Catteil (1978) suggested that
true factors should replicate across samples whereas spuri-
ous factors should be unstable over samples.

structure (Thurstone, 1947). Thurstone proposed that
for any given set of mathematically equivalent solu-
tions, the solution with the best "simple structure"
would generally be the most easily interpretable,
psychologically meaningful, and replicable. Thurst-
one used the term simple structure to refer to solu-
tions in which each factor was defined by a subset
of measured variables that had large loadings rela-
tive to the other measured variables (i.e., high with-
in-factor variability in loadings) and in which each
measured variable loaded highly on only a subset
of the common factors (i.e., low factorial complex-
ity in defining variables). Therefore, Thurstone sug-
gested that factors be rotated in multidimensional
space to arrive at the solution with the best simple
structure.

A number of analytic rotation methods have been
developed to seek simple structure, and numerous ar-
ticles have been published comparing the utility of
these various rotation procedures (e.g., Crawford &
Ferguson, 1970; Dielman, Catteil, & Wagner, 1972;
Gorsuch, 1970; Hakstian, 1971; Hakstian & Boyd,
1972; Hofmann, 1978). Although these rotation
methods differ in a number of respects, perhaps the
most fundamental distinction that can be made is be-
tween orthogonal and oblique rotations. Orthogonal
rotations constrain factors to be uncorrelated. Though
a number have been developed, varimax (Kaiser,
1958) has generally been regarded as the best or-
thogonal rotation and is overwhelmingly the most
widely used orthogonal rotation in psychological re-
search.

In contrast to orthogonal rotations, oblique rota-
tions permit correlations among factors. One common
misconception among researchers is that oblique ro-
tations require factors to be correlated. This is not the
case. If the solution with the best simple structure
involves orthogonal factors, a successful oblique ro-
tation wil l provide estimates of the correlations
among factors that are close to zero and produce a
solution that is quite similar to that produced by a
successful orthogonal rotation (Harman, 1976). How-
ever, in situations in which the best simple structure is
a solution with correlated factors, successful oblique
rotations will produce solutions with correlated fac-
tors. Unlike orthogonal rotation, there is no single
method of oblique rotation that is clearly dominant in
psychological research. Several oblique rotation pro-
cedures are commonly used and have been found to
generally produce satisfactory solutions. These in-
clude direct quartimin rotation (Jennrich & Sampson,
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1966), promax rotation (Hendrickson & White, 1964),
and Harris-Kaiser orthoblique rotation (Harris & Kai-
ser, 1964).8

Some researchers have indicated a preference for
orthogonal rotation because of its simplicity and con-
ceptual clarity (e.g., Nunnally, 1978). However, there
are a number of reasons to question the wisdom of this
view. First, for many constructs examined in psychol-
ogy (e.g., mental abilities, personality traits, atti-
tudes), there is substantial theoretical and empirical
basis for expecting these constructs (or dimensions of
these constructs) to be correlated with one another.
Therefore, oblique rotations provide a more accurate
and realistic representation of how constructs are
likely to be related to one another. Thus, from a sub-
stantive perspective, the restriction of uncorrelated
factors imposed by varimax and other orthogonal ro-
tations is often unwarranted and can yield misleading
results. Second, because orthogonal rotations require
factors to be oriented at 90° angles from one another
in multidimensional space (i.e., uncorrelated factors)
whereas oblique rotations allow for orientations of
less than 90° (i.e., correlated factors), orthogonal ro-
tations are likely to produce solutions with poorer
simple structure when clusters of variables are less
than 90° from one another in multidimensional space
(i.e., when the true underlying factor structure is
based on correlated factors). Finally, oblique solutions
provide more information than orthogonal rotations.
Oblique rotations produce estimates of the correla-
tions among common factors. Knowing the extent to
vvhich factors are correlated with one another can of-
ren be useful in interpreting the conceptual nature of
i he common factors. Indeed, the existence of substan-
l ia l correlations among factors suggests that higher
order factors may exist. Correlation matrices of fac-
tors can in turn be analyzed to gain insight into the
number and nature of these higher order factors and
thereby further refine a researcher's understanding of
the data (see Gorsuch, 1983). Because orthogonal ro-
tations do not provide correlations among factors, it is
impossible to determine if one or more higher order
factors are present in the data.

Summary and Recommendations

The implementation of EFA requires a researcher
to address five major types of methodological deci-
sions. There are a number of options available for
each decision, and the issues involved in selecting
among these options are sometimes complex. None-
theless, these decisions are not arbitrary in that

some options are clearly more optimal than others.
Thus, the utility of an EFA is likely to be a function
of the decisions made in the design of the study and
the implementation of the analysis. Indeed, it is inter-
esting that some notable examples of the supposed
failure of EFA to provide valid insights into data in-
volved poor factor analytic methodology. For in-
stance, Armstrong's (1967) classic demonstration of
the alleged limitations of EFA used a PCA, the eig-
envalues-greater-than-1 rule, and varimax rotation. In
light of the questionable nature these choices, it is not
surprising the analysis failed to uncover the true struc-
ture of the data.9 Given these facts, some clear rec-
ommendations can be made regarding how EFA
should be conducted.

/. Study design. Because EFA results are likely
to be more accurate if sensible decisions are made in
selecting measured variables and samples, it is essen-
tial that researchers carefully consider both of these
issues. Obviously, because EFA is used in situations
where there is relatively little prior theory and empiri-
cal evidence, variable selection can be difficult. None-
theless, to the extent it is possible, researchers should
try to anticipate the number and nature of the factors
they expect to obtain and use this as a guide for se-
lecting variables. We suggest researchers include at
least four measured variables for each common factor
they expect to emerge and perhaps as many as six
given that there is usually considerable uncertainty
about the nature of the common factors and their re-
lations to the measured variables. Furthermore, al-
though EFA should be based on comprehensive sam-

8 Unfortunately, the selection of oblique rotations offered
in major statistical packages is quite limited. SPSS offers
promax and Harris-Kaiser orthoblique rotations. Direct obli-
min rotation is a family of rotations defined by different
values of the delta parameter, which governs the oblique-
ness of the solution. The default value for this parameter in
SPSS is 0. which corresponds to a direct quartimin rotation.
A new EFA program. CEFA (comprehensive exploratory
factor analysis; Browne. Cudeck, Tateneni. & Mels, 1998)
offers a much wider range of rotations.

9 Additionally, because the data created by Armstrong
have a number of properties that violate assumptions of the
common factor model (e.g., nonlinear relations between fac-
tors and measured variables), his data are not really appro-
priate for EFA. Nonetheless, we found that if one uses more
optimal EFA procedures, the analysis produces a solution
that provides a good representation of the underlying struc-
ture of the data, thus invalidating Armstrong's arguments
against the use of factor analysis.
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pling of measured variables in the domain of interest,
we recommend that researchers carefully consider the
psychometric properties of variables. Variables with
low reliabilities (e.g., below .70) should be avoided,
and when validity information is available, it should
be used as a basis for selecting items. With respect to
determining adequate sample size, the properties of
the measured variables should be taken into account.
Under good conditions (communalities of .70 or
higher, four to five variables for each factor), a sample
size of 100 might well be adequate (although it is
always best to have larger sample sizes if possible).
Under conditions of moderate communalities (e.g.,
.40 to .70) and moderate overdetermination of factors,
a sample of 200 or more seems advisable. Finally,
under poor conditions, no sample size may be suffi-
cient to produce accurate estimates of the population
parameters. However, it seems likely that a sample
less than 400 will lead to distorted results.

2. Appropriateness of EFA. We urge researchers
to carefully consider if EFA is the most appropriate
form of analysis to meet their research objectives.
EFA should be used when the primary goal is to iden-
tify latent constructs and there is insufficient basis to
specify an a priori model (or small subset of models).
CFA should be used when the goal is to identify latent
constructs and a substantial basis exists to specify an
a priori model or small subset of models. PCA should
not be used as a substitute for EFA.

3. M,idel-fitting procedures. With respect to se-
lecting one of the major methods of fitting the com-
mon factor model in EFA (i.e., principal factors, iter-
ated principal factors, maximum likelihood), all three
are reasonable approaches with certain advantages
and disadvantages. Nonetheless, the wide range of fit
indexes available for ML EFA provides some basis
for preferring this approach. However, researchers
should rscognize that this procedure can produce mis-
leading results when assumptions of multivariate nor-
mality are severely violated (see Curran et al., 1996;
Hu et a!., 1992). Therefore, we recommend that the
distributions of measured variables be examined prior
to conducting ML EFA. If nonnormality is severe
(e.g., skew > 2; kurtosis >7; West, Finch, & Curran,
1995), one of several remedies might be employed
(see West et al., 1995). Measured variables could be
transformed to normalize their distributions. Correc-
tions to fit indexes and standard errors could be per-
formed (Bentler & Dudgeon, 1996; Browne, 1984;
Satorra & Bentler, 1994). Alternatively, one might
wish to use a principal factors procedure.10

4. Determining the number of factors. We sug-
gest that researchers rely on multiple criteria when
deciding on the appropriate number of factors to in-
clude in a model. In the use of principal factors meth-
ods, we recommend the scree test and parallel analy-
sis using eigenvalues from the reduced correlation
matrix. In ML factor analysis, we encourage the use
of descriptive fit indexes such as RMSEA and ECVI
as discussed by Browne and Cudeck (1992) along
with more traditional approaches such as the scree test
and parallel analysis. A sensible strategy in most
cases would be to use multiple methods to make this
decision and then carefully examine the rotated solu-
tion for the suggested model to confirm that it is in-
terpretable and theoretically plausible. In situations in
which the sample size is sufficiently large, a re-
searcher might also wish to randomly split the data
and examine the stability of the solution across the
two halves (for a discussion of assessing factor com-
parability across samples, see Gorsuch, 1983). In con-
texts in which procedures suggest different numbers
of factors or in which the procedures produce some-
what ambiguous results, the researcher should exam-
ine the subset of models that these procedures suggest
are most plausible. The rotated solutions for these
models can then be examined to see which model
produces the most readily interpretable and theoreti-
cally sensible pattern of results (Comrey, 1978; Ford
et al., 1986; Hakstian & Muller, 1973; Hakstian et al.,
1982; C. W. Harris, 1967) and when possible which
of these solutions is most stable over different data
sets or split halves of data sets.

5. Rotation. Given the advantages of oblique ro-
tation over orthogonal rotation, we see little justifica-
tion for using orthogonal rotation as a general ap-
proach to achieving solutions with simple structure
(Gorsuch, 1983). Instead, it is most sensible to first
examine the solutions produced by one or more of the
common methods of oblique rotation (e.g., promax,
orthoblique, or direct quartimin). If this solution in-

10 Another approach to addressing violations of normal-
ity is to create "item parcels" (i.e., composites of several
measured variables that tap on the same common factor).
Creation of such item parcels often results in measured vari-
ables with more normal distributions than the individual
items (West et al., 1995). However, such an approach will
often not be feasible in EFA, because little is known re-
garding which measured variables are influenced by the
same common factors, and thus it will be difficult to form
item parcels.
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dicates that the factors are uncorrelated, then it is
reasonable for the researcher to conduct a varimax
rotation and use this as the basis for interpretation
(though this solution will likely be very similar to the
oblique solution). On the other hand, if at least some
of the factors are found to be correlated with one
another, it is most defensible to use the oblique solu-
tion as the basis for interpretation.

Illustration of Consequences of Choices
in Analysis

As noted earlier, some critics of EFA have been
insufficiently sensitive to the extent to which particu-
lar decisions about how the analysis is conducted can
influence the results. In order to illustrate some of the
effects that these decisions can have, we reanalyzed
three data sets from a well-developed psychological
literature on the tripartite model of attitude structure.

According to the tripartite model (Rosenberg &
Hovland, 1960; Smith, 1947), attitudes have affective,
cognitive, and behavioral components. That is, feel-
ings experienced when in the presence of an attitude
object, beliefs about the attributes of the object, and
past or present behaviors relevant to the object make
up the structure underlying overall summary evalua-
tions (see Eagly & Chaiken, 1998; Petty, Priester, &
Wegener, 1994; Wegener & Gregg, in press, for more
recent discussions). Numerous studies have investi-
gated the hypothesized tripartite nature of attitudes
(e.g., Breckler, 1984; Kothandapani, 1971; Ostrom,
•969), and in particular, the affective and cognitive
components have received a great deal of attention as
-.eparable aspects of attitude structure. For example,
assessments of the affect and cognition associated
with particular attitude objects have independently
predicted attitudes in a variety of settings (e.g., Abel-
•on. Kinder, Peters, & Fiske, 1982; Crites, Fabrigar,
& Petty, 1994), and confirmatory analyses have sup-
ported multifactor (tripartite) rather than single-factor
models of these attitude structures (Breckler, 1984).
Moreover, attitudes primarily based on affect versus
cognition predict different classes of behaviors (e.g.,
Millar & Tesser, 1986, 1989) and are differentially
influenced by affective versus cognitive persuasive
appeals (e.g., Edwards, 1990; Fabrigar & Petty, 1999;
Millar & Millar, 1990). Therefore, there are compel-
ling theoretical and empirical rationales for separating
affect and cognition in attitude structure. Because of
this, there is a strong basis for expecting that EFA
should ideally recover separable affect, cognition, and

(perhaps) behavior factors when examining relevant
data sets.

We addressed this question by reanalyzing three
data sets from this literature. First, we analyzed two
9-item matrices from Breckler (1984). In these matri-
ces, three items each had been designed to assess
affective, cognitive, and behavioral aspects of atti-
tudes, respectively (see Breckler, 1984, for detail on
the measures). We took the third data set from Crites
et al. (1994), in which general measures were devel-
oped to assess the affective and cognitive bases of
attitudes (three types of measures for each). In order
to take advantage of the existence of an additional
measure of affect and an additional measure of cog-
nition specific to one of the attitude objects (snakes;
Breckler, 1984), we analyzed 8 items from Study 1 of
the Crites et al. (1994) article, in which people re-
sponded to the attitude object "snakes" (see Breckler,
1984; Crites et al., 1994, for additional detail on the
measures).

We wished to use these data sets to illustrate how
different procedures in conducting EFA analyses
could lead one to either accurately or inaccurately
identify the number and nature of the common factors
underlying these data sets. We submitted the matrices
to a PCA, examining both a varimax (orthogonal) and
a direct quartimin (oblique) rotation. We also submit-
ted the same matrices to a ML factor analysis, again
examining both the varimax and direct quartimin ro-
tations. In order to determine the number of factors,
we examined the eigenvalues from the unreduced cor-
relation matrices applying the eigenvalues-greater-
than-1 rule. For the ML factor analysis models, we
also examined the RMSEA and ECVI indexes of
model fit, as well as the scree test and parallel analysis
(Montanelli & Humphreys, 1976) for the eigenvalues
from the reduced correlation matrix.

The sample sizes were 138, 105, and 164, for
Breckler (1984) Studies 1 and 2 and Crites et al.
(1994) Study 1, respectively. Though the sample sizes
are a bit smaller than one might want, the sampling
error that might occur in small samples would only
work against the observation of consistent results
across data sets. Therefore, consistency across the
samples would increase confidence in the obtained
results, despite any concerns about small samples.
The initial communality estimates (squared multiple
correlations) are somewhat variable in each study (see
Table 1). For Breckler, Study I , the estimates ranged
from .61 to .25 with M = .42. For Breckler, Study 2.
the estimates ranged from .81 to .37 with M = .62.
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Table 1
Squared Multiple Correlations (SMCs) for Items in
Breckler (1984; Studies I and 2) and Crites, Fabrigar,
and Petn (1994; Studv I)

SMCs

Item Study 1

Breckler

Study

Affect
Thurstone affect
Mood Checklist (+)
Mood Checklist (-)

Behavior
Action sequence
Distance
Thurstone behavior

Cognition
Thurstone cognition
Semantic differential
Listed thoughts

Crites et al.
Affect

Multiresponse Checklist
Dichctomous Checklist
Semantic differential
Thurstone affect

Cognition
Multiresponse Checklist
Dichotomous Checklist
Semantic differential
Thurstone cognition

0.43
0.25
0.33

0.53
0.37
0.56

0.38
0.61
0.35

0.82
0.78
0.78
0.34

0.85
0.79
0.85
0.56

0.54
0.37
0.51

0.73
0.81
0.77

0.50
0.76
0.58

For Crites et al., Study 1, the estimated ranged from
.85 to 34 with M = .72. However, these average
communalities, especially for Study 2 of Breckler
(1984) and Study 1 of Crites et al. (1994), are actually
higher man the initial communalities that often occur

in applied research (see later discussion). Of course,
most variables in real data will have substantial
unique variance, and such conditions should be espe-
cially likely to lead to differences between EFA
(which separately represents common and unique
variance in the model) and PC A (which does not dif-
ferentiate between common and unique variance).
Unfortunately, information about the distributional
properties of the items in the Breckler (1984) data sets
was unavailable. For the Crites et al. (1994) data,
however, the skew (-0.77 to 0.73, lAfl = 0.41) and
kurtosis (-1.02 to 3.28. IA/1 = 0.79) of the items were
far smaller than the recommended thresholds for
questioning the adequacy of ML estimation methods
(skew > 2, kurtosis > 7; West et al., 1995). Therefore,
across the data sets we analyzed, consistency in solu-
tions could provide a compelling illustration of how
the various decisions can influence the results for real
data.

Number of Factors

Table 2 provides the eigenvalues for the reduced
and unreduced correlation matrices for each data set.
As can be seen from the eigenvalues for the unre-
duced correlation matrix, the eigenvalues-greater-
than-1 rule suggested two-factor and one-factor mod-
els for the Breckler (1984) data sets (Studies 1 and 2,
respectively). For the Crites et al. (1994) data, the rule
suggested a one-factor model (see Table 1). Scree
plots of these values, though a bit ambiguous, would
perhaps suggest one-factor models for all three stud-
ies. However, given that the goal is to identify com-
mon factors, it is more sensible to examine the scree
plots of the eigenvalues from the reduced correlation
matrices. These plots would once again perhaps sug-

Table 2
Eigenvalues for Breckler (1984; Studies 1 and 2) and Crites, Fabrigar, and Petty (1994;
Studv I), From the Unreduced and Reduced Correlation Matrices

Factor number

Correlation matrices

Breckler Study 1
Unreduced
Reduced

Breckler Study 2
Unreduced
Reduced

Crites et al. Study 1
Unreduced
Reduced

3
3

5
5

5
5

.84

.30

.59

.24

.72

.48

1.20
0.60

0.91
0.40

0.88
0.50

0.
0,

0,
0,

0,

.98

.39

.70

.34

.46
0.07

0.85
0.20

0.50
0.05

0.38
0.01

0.65
0.02

0.42
-0.04

0.19
-0.05

0.47
-0.10

0.34
-0.07

0.17
-0.06

0.41
-0.12

0.23
-0.09

0.12
-0.08

0.35
-0.21

0.19
-0.13

-0.09
-0.09

0.25
-0.27

0.13
-0.14
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gest a one-factor model for the three data sets. How-
ever, on the basis of these scree plots, one might also
argue for a four-factor model in the Breckler Study 1
data set, a three-factor model in the Breckler Study 2
data set, and two-factor model in the Crites et al. data
set.

When one examines the parallel analysis performed
on the reduced correlation matrix (Montanelli &
Humphreys, 1976), a one-factor solution appears less
reasonable. For Breckler (1984) Study 1, the first four
eigenvalues expected for random data (0.51, 0.34,
0.25, 0.17) fall below the observed eigenvalues from
the reduced matrix (3.30, 0.60, 0.39, 0.20). For Breck-
ler (1984) Study 2, three of the first four eigenvalues
expected for random data (0.60, 0.40, 0.29, 0.20) fall
at or below the observed eigenvalues from the re-
duced correlation matrix (5.24. 0.40, 0.34, 0.05) with

Table 3
Selected Fit Indexes for Analyses of Breckler (1984;
Studies I and 2) and Crites, Fabrigar, and Petty (1994;
Study 1): RMSEAs and ECVls From ML and PACE
Factor Analyses

Model-fitting procedure

Breckler Study 1 (n =
RMSEA

ML
PACE

ECVI
ML
PACE

1

138)

0.15
0.13

1.04
0.93

Number

2

0.12"
0.14

0.79
0.87

of factors

3

0.03"
0.08

0.58
0.65

4

0.00"
0.25

0.59
0.97

Breckler Study 2 (n = 105)
RMSEA

ML
PACE

ECVI
ML
PACE

Crites et al. Study 1 (n
RMSEA

ML
PACE

ECVI
ML
PACE

0.14
0.14

1.16
1 . 1 1

= 164)

0.23
0.23

1.41
1.38

0.09
0.09

0.85
0.85

0.06
0.06

0.42
0.41

0.00
0.00

0.68
0.69

0.02
0.04

0.40
0.41

0.00
0.00

0.76
0.76

h'ote. Noniterated principal factoring and PACE factoring pro-
cjce similar solutions with no boundary estimates. (See Footnote
12 fora description of this analysis.) RMSEA = root mean square
eiror of approximation; ECVI = expected cross-validation index;
ML = maximum likelihood; PACE = partitioned covariance es-
timator.
"The solutions noted included one or two boundary estimates (0) for
unique variances.

the fourth observed eigenvalue falling far below the
fourth value for random data. For Crites et al. (1994)
Study 1, two of the four eigenvalues expected for
random data (0.42, 0.27, 0.19. 0.11) fall below the
observed eigenvalues (5.48. 0.50, 0.07, 0.01). ' ' Thus,
the parallel analyses question the one-factor decision
that might come from the eigenvalues-greater-than-1
rule. They suggest a three-factor solution in one of the
Breckler data sets and a two-factor solution in the
Crites et al. data set (both as expected given past data
and theory), but they suggest a four-factor solution for
Study 1 of the Breckler (1984) data.

The goodness-of-fit indexes, however, strongly
suggest the theoretically expected factor structures
(see Table 3). For the Breckler (1984) data sets.
RMSEA shows poor fit with the one-factor model and
presents substantial improvement with a three-factor
model. Moreover, overall fit becomes quite good (see
Browne & Cudeck, 1992) when the third factor is
added. There is also very little overlap in the 90%
confidence intervals (CI) for the two-factor (RMSEA
= 0.12, CI = 0.09-0.16 for Study 1; RMSEA =
0.09, CI = 0.04-0.14 for Study 2) and three-factor
models (RMSEA = 0.03, CI = 0.00-0.10 for Study
1; RMSEA = 0.00, CI = 0.00-0.00 for Study 2) but
complete overlap between the three- and four-factor
models (RMSEA = 0.00, CI = 0.00-0.07 for Study
1: RMSEA = 0.00, CI = 0.00-0.00 for Study 2). The
ECVI has it lowest value (i.e., the smallest point es-
timate for a predicted discrepancy in a new sample)
for the three-factor model. This pattern clearly sug-
gests the three-factor model as superior to the one- or
two-factor models. For the Crites et al. (1994) data,
the expected two-factor structure is strongly sug-
gested. The model has quite poor fit with one factor

1 ' As noted earlier, there have also been parallel analyses
developed for determining the number of components to
retain (e.g., Longman et al., 1989). Given our interest of
determining the number of factors underlying the data, how-
ever, it seems most reasonable to use the parallel analysis
method designed for determining the number of common
factors (i.e., parallel analysis with squared multiple corre-
lations in the diagonal of the correlation matrix). Using
parallel analyses for the unreduced matrix suggests extrac-
tion of a single principle component (though such a conclu-
sion is questioned by the parallel analysis on the reduced
matrix and by the indexes of EFA model fit). Moreover, one
would want to be cautious about accepting a single factor
model in this context given that underfactoring is often
thought to be a more severe error than overfactoring.
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and acceptable fit with two factors. Moreover, there is
no overlap in the 90% CIs for the one-factor (RMSEA
= 0.23, CI = 0.20-0.26) and two-factor models
(RMSEA = 0.06, CI = 0.00-0.11) but nearly com-
plete overlap between the two- and three-factor mod-
els (RMSEA = 0.02, CI = 0.00-0.10). Again, ECVI
fails to improve beyond the level obtained with the
theoretically expected number of factors.

When taken together, these analyses provide a use-
ful illustration of how nonoptimal procedures can lead
a researcher to misleading conclusions regarding the
appropriate number of factors. The eigenvalues-
greater-i ban-1 rule consistently suggested fewer fac-
tors than past research and theory would indicate was
most plausible for each data set. The scree test pro-
vided somewhat ambiguous information. In contrast,
parallel analysis suggested the most plausible number
of factors for two of the three data sets, and model fit
suggested the most plausible number of factors in all
three data sets. Thus, consistent with the methodologi-
cal literature, a researcher clearly would have been
better served relying on parallel analysis and model fit
than the eigenvalues-greater-than-1 rule when deter-
mining the number of factors for these data.

Orthogonal Versus Oblique Rotations

Researchers are often tempted to seek "conceptu-
ally distinct" factors by conducting varimax (orthogo-
nal) rotations in factor analyses. It is sometimes
thought that this retention of statistically independent
factors "cleans up" and clarifies solutions, making
them easier to interpret. Unfortunately, this intuition
is exact.ly the opposite of what the methodological
literature suggests, and the present results bear out the
methodology-based conclusions. Tables 4, 5, and 6
present PCA and ML factor analysis results (the left
and right columns) using varimax and direct quarti-
min rotations (the top and bottom portions of the
tables). For ease of examination, loadings above 0.30
are presented in bold face. We have ordered factors
similarly for each analysis (for the Breckler data sets,
with the most "affective" factors first, most "behav-
ioral" factors second, and most "cognitive" factors
third; for the Crites et al. data, with the most "affec-
tive" factor first, and most "cognitive" factor second).

For each of the studies, it would have been unfor-
tunate for a researcher to rely solely on a varimax
rotation. Examining only those loadings above 0.30,
there are many more cross-factor loadings (i.e., items
that load above 0.30 for more than one factor) with
the orthogonal rotation. Across the six varimax rota-

tions reported in Tables 4, 5, and 6, there are 28 times
that an item is found to load on more than one factor
(or component). However, the six direct quartimin
rotations reported in Tables 4, 5, and 6 produce only
eight cross-factor loadings. Examining the loadings
below 0.30, the varimax rotation produced only 13%
with magnitudes (ignoring sign) of less than 0.10;
42.6% had values between 0.10 and 0.20, and 44.4%
had values greater than 0.20. Using the direct quarti-
min rotation, 60.8% of the loadings below 0.30 had
magnitudes equal or less than 0.10; 25.3% had values
between 0.10 and 0.20, and only 13.9% had values
greater than 0.20 (despite including the 25 loadings
that fell below 0.30 using direct quartimin but were
above 0.30 using varimax). Therefore, it seems quite
clear that direct quartimin (the oblique rotation) pro-
vided superior simple structure.

Besides the "cleaner" solutions provided by the ob-
lique rotation, a researcher relying on an orthogonal
rotation would also forfeit any knowledge of the ex-
isting correlations among factors. Although some of
the varimax solutions for the current data (e.g., the
ML factor analysis solution for Breckler, 1984, Study
1) might have led the researcher to think in terms of
"affect, behavior, and cognition," he or she might
have thought that there was little reason to think of the
three factors as correlated (given the orthogonal rota-
tion). Yet, when the direct quartimin rotation was
used on the same data, it not only produced better
simple structure clearly breaking along affective, be-
havioral, and cognitive lines, but it also revealed that
the factors were correlated in the .4-.6 range (see
Tables 4, 5, and 6).

Factor Analysis Versus Principal Components

Comparing the PCA and EFA columns also pro-
vides some useful information. As noted earlier,
Widaman (1993) used simulation data to show that
PCA inflates loadings when compared with factor
analysis. Widaman found that "salient" loadings (i.e.,
the highest loadings on a given factor) are higher in
PCA than in factor analysis and that such inflation is
greater when the salient loadings are more moderate
in value (e.g., 0.40 in the population) rather than high
(e.g., 0.80 in the population). Because factor and com-
ponent analyses lead to some differences in the pat-
terns of loadings across factors in the current data,
direct comparisons of loadings might not always be
meaningful. Yet, an overall pattern consistent with
Widaman's (1993) analyses seems to be present.
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Table 4
Loadings for Principal Components and Common Factors Using Varimax and Direct
Quartimin Rotations: Breckler (1984: Study I)

Rotation
Item

Principal components
analysis (components)

1 2 3

Maximum likelihood
factor analysis (factors)

1 2 3

Varimax
Affect

Thurstone affect 0.83 0.29 0.09 0.99 0.10 0.11
Mood Checklist (+) 0.47 0.57 -0.19 0.43 0.15 0.13
Mood Checklist (-) 0.77 -0.05 0.34 0.46 0.23 0.16

Behavior
Action sequence 0.25 0.66 0.37 0.24 0.86 0.20
Distance -0.05 0.80 0.25 0.15 0.49 0.34
Thurstone behavior 0.19 0.66 0.46 0.28 0.60 0.40

Cognition
Thurstone cognition 0.03 0.11 0.78 0.10 0.17 0.58
Semantic differential 0.12 0.39 0.77 0.17 0.26 0.95
Listed thoughts 0.26 0.17 0.68 0.23 0.27 0.47

Direct quartimin
Affect

Thurstone affect
Mood Checklist (+)
Mood Checklist (-)

Behavior
Action sequence
Distance
Thurstone behavior

Cognition
Thurstone cognition
Semantic differential
Listed thoughts

0.82
0.40
0.81

0.14
-0.20

0.08

0.00
0.04
0.23

Correlations
j _

2
3

.32

.18

0.18
0.57

-0.20

0.64
0.84
0.64

0.04
0.34
0.08

among factors

.28

-0.06
-0.35

0.26

0.23
0.12
0.33

0.78
0.71
0.63

1.08
0.43
0.45

0.03
-0.01

0.10

-0.01
-0.01

0.12

-0.14
0.04
0.13

0.97
0.47
0.56

-0.01
-0.04

0.13

-0.05
0.03
0.03

-0.12
0.20
0.21

0.62
1.02
0.43

or components

—
.51
.42 .60 —

Note. Loadings in bold are values above 0.30.

If one takes all the loadings that are above 0.30 for
at least one of the analyses (PCA or ML factor analy-
sis) and compares the magnitude of those loadings
across methods, the PCA loadings tend to be higher.
For example, the salient loadings for Component 2 of
the varimax rotation in Study 1 (in bold on Table 4)
have values of 0.57, 0.66, 0.80, 0.66, and 0.39 (M =
0.62). The corresponding loadings for the ML factor
analysis (Factor 2) are 0.15, 0.86, 0.49, 0.60, and 0.26
(M = 0.47). There are 16 such comparisons across
the analyses presented, and 12 of the comparisons
show higher salient loadings for components than for
factors. Although existing work has generally exam-

ined possible inflation of salient loadings, some of the
inflations in the current data are "nonsalient" loadings
from factor analyses that become large enough for
some researchers to consider them salient in defining
a component. Such inflations would pose a potentially
major problem, because they could change the pre-
sumed nature and interpretation of the constructs un-
der investigation. One possible instance of such infla-
tion is the creation of a sizeable loading of the Affect
Dichotomous Checklist (0.57) in the PCA solution for
Crites et al. (1994) Study 1 in which the direct quar-
timin rotation was used (see Table 4). The same load-
ing (of an "affect" item on a primarily "cognitive"
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Table 5
Loadings for Principal Components and Common Factors Using Varimax and Direct
Quartimin Rotations: Breckler (1984; Study 2)

Rotation
Item

Varimax
Affect

Thurstone affect
Mood Checklist (+)
Mood Checklist (-)

Behavior
Action sequence
Distance
Thurstone behavior

Cognition
Thurstone cognition
Semantic differential
Listed thoughts

Direct Quartimin
Affect

Thurstone affect
Mood Checklist (+)
Mood Checklist (-)

Behavior
Action sequence
Distance
Thurstone behavior

Cognition
Thurstone cognition
Semantic differential
Listed thoughts

Principal components
analysis (components)

1

0.72
0.89
0.31

0.27
0.25
0.24

0.08
0.36
0.53

0.68
0.98
0.11

0.01
-0.05
-0.04

-0.05
0.18
0.42

2

0.43
0.18
0.69

0.81
0.89
0.84

0.22
0.55
0.49

0.24
-0.11

0.72

0.87
1.01
0.90

-0.07
0.36
0.32

3

0.18
0.07
0.19

0.27
0.19
0.29

0.94
0.65
0.39

0.03
-0.04
-0.01

0.04
-0.07

0.07

1.02
0.56
0.26

Maximum likelihood
factor analysis (factors)

1

0.75
0.63
0.40

0.39
0.32
0.36

0.13
0.43
0.57

0.81
0.71
0.22

0.10
-0.09

0.04

-0.06
0.24
0.51

2

0.32
0.24
0.53

0.69
0.90
0.73

0.22
0.44
0.38

0.02
-0.01

0.49

0.72
1.10
0.79

-0.01
0.19
0.14

3

0.20
0.12
0.28

0.34
0.24
0.36

0.76
0.70
0.39

0.01
-0.05

0.08

0.10
-0.10

0.11

0.84
0.63
0.25

Correlations among factors or components

.59

.35 .56
.73
.52 .64

Note. Loadings in bold are values above 0.30.

component) was 0.09 in the factor analysis. It is clear
to see that the direct quartimin ML solutions are sub-
stantially "cleaner" than the same rotation of the PCA
solutions.

Another notable difference between the PCA and
ML solutions concerns the identified correlations
among factors. Consistent with Widaman's (1993)
simulations, the correlations identified by oblique ro-
tation of the PCA solution were substantially lower
than the correlations identified by the same rotation of
the ML factor analysis. It makes sense that PCAs
should generally underestimate relations among the
constructs, because random error is included in the
components. Because factor analyses remove random

error from the factors, the relations among factors are
more likely to approach the population values. Such
differences are especially evident in analyses of
Breckler (1984) Study 1. The correlations among
components (i.e., .32, .18, and .28) were roughly half
the magnitude of the correlations among factors (i.e.,
.51, .42, and .60). If a researcher had used a PCA, he
or she would have been tempted to conclude that the
components were largely independent. However, us-
ing an EFA, the same researcher would have realized
that the smallest of the interfactor correlations was
actually greater than 0.4. These would certainly be
rather different conclusions. Similar deflations of cor-
relations occur for the PCAs of Breckler (1984) Study
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Table 6
Loadings for Principal Components and Common Factors Using Varimax and Direct
Quartimin Rotations: Criles, Fabrigar, and Petty (1994; Study 1)

Principal components Maximum likelihood
D t t- audi^M* ^uiiipuiicHUV idt-iui analysis uacioisj

Item

Varimax
Affect

Multiresponse Checklist
Dichotomous Checklist
Semantic differential
Thurstone affect

Cognition
Multiresponse Checklist
Dichotomous Checklist
Semantic differential
Thurstone cognition

Direct Quartimin
Affect

Multiresponse Checklist
Dichotomous Checklist
Semantic differential
Thurstone affect

Cognition
Multiresponse Checklist
Dichotomous Checklist
Semantic differential
Thurstone cognition

Correlations
1
2

1

0.63
0.67
0.57
0.91

0.27
0.31
0.28
0.15

0.42
0.49
0.35
0.94

-0.04
0.01

-0.04
-0.15

among
—
.46

i

0.66
0.61
0.70
0.09

0.89
0.86
0.90
0.83

0.64
0.57
0.69

-0.04

0.95
0.90
0.95
0.90

factors or components

—

1

0.81
0.80
0.74
0.56

0.38
0.40
0.41
0.38

0.82
0.84
0.70
0.66

-0.04
0.02
0.01
0.11

—
.77

2

0.48
0.44
0.52
0.20

0.87
0.81
0.85
0.64

0.15
0.09
0.24

-0.09

0.98
0.89
0.94
0.66

—

Note. Loadings in bold are values above 0.30.

2 (see Table 5) and Crites et al. (1994) Study 1 (see
Table 6) . l 2

The analyses of the Breckler (1984) and Crites et
al. (1994) data provide examples of how questionable

12 It is worth noting that some parameter estimation prob-
kms were encountered in the ML analyses of the Breckler
(1984) Study 1 data set. Heywood cases were encountered
f.ir the two-, three-, and four-factor models. It is perhaps not
surprising that difficulties were encountered for one of the
f lur-factor models given that this model is almost certainly
inappropriate for the present data (i.e., the model is over-
factored). One common reason for encountering such esti-
mation problems is when a misspecified model is fit to the
data. In the case of the three-factor model for Study 1, the
theoretical plausibili ty of the solution and the comparability
of this solution with the three-factor model solution for
Study 2 and the two-factor solution from the Crites et al.
( !994) data suggest that the existence of Heywood cases
d.ies not constitute a serious problem. Nonetheless, to ex-
amine if the results of the ML analyses had produced un-
u-ual results as a function of severe nonnormality in the data

(which could not be tested for the Breckler data sets), we
conducted noniterated principal factor analyses for these
data. These analyses produced results very similar to those
of the ML analyses. Additionally, the noniterated principal
factor solutions for the four-factor models confirmed that a
four-factor model was in fact inappropriate for these data.
The four-factor models (as was the case for the ML analy-
ses) failed to produce readily interpretable or plausible so-
lutions. No estimation problems were encountered in any of
the analyses of the Crites et al. (1994) data set, and not
surprisingly the noniterated principal factor analyses of
these data produced solutions very similar to the ML analy-
ses. Finally, to further test the stability of the ML solutions
across all three data sets, we conducted analyses using Par-
tit ioned Covariance Matr ix Estimator Factor Analysis
(PACE; Cudeck. 1991). This procedure is available in the
program CEFA (Browne et al.. 1998). It is a noniterated
common factor model-fitting procedure that permits the
computation of the same fit indexes available in ML. The
PACE analyses produced patterns of fit indexes across the
models that were comparable to those of the ML analyses.
The solutions obtained from the PACE analyses were also
quite similar to those of the ML analyses.
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procedures can produce results that are rather confus-
ing and misleading. For all three studies, an EFA with
an oblique rotation provides much better simple struc-
ture, more interpretable results, and more theoretically
plausible representations of the data than a PCA with
an orthogonal rotation. Moreover, the oblique rotation
(especially when paired with EFA rather than PCA)
provides important information concerning the rela-
tions among extracted factors. Across the example
data sets, we see that different procedures for deter-
mining the appropriate number of factors, different
analytic methods (PCA vs. EFA), and different rota-
tion procedures all have an effect on results and in-
terpretations.

The Use of Factor Analysis in Current
Psychological Research

One obvious question that arises from our review
and illustration is the issue of the extent to which
researchers actually use the procedures we have
shown to produce misleading results. An answer to
this question is not readily available. Although meth-
odologists have often commented on the use of factor
analysis in psychology (e.g., Comrey, 1978; Ford et
al., 1986; McNemar, 1951; Skinner, 1980; see also
Gorsuch. 1983), most of these criticisms have been
based on subjective impressions rather than system-
atic reviews of published applications. One exception
is a review of EFA practices reported by Ford et al.
(1986). They systematically examined applications of
EFA published between 1975 and 1984 in the area of
industr ial-organizat ional psychology. They con-
cluded that factor analytic practices within this area
were generally inconsistent with the methodological
literature. However, their review did not fully address
study design issues, was confined to a single area of
psychology, and covered applications published 14 or
more y;:ars ago.

Assessing Current Factor Analytic Practices

To explore the question of how factor analysis is
currently used in psychological research, we con-
ducted a systematic review of articles published from
1991 through 1995 in the Journal of Personality and
Social Psychology (JPSP) and the Journal of Applied
Psychology (JAP). We selected these journals, be-
cause they represent two areas of psychology (person-
ality-social psychology and industrial-organizational

psychology) in which EFA has been widely used. We
also chose these particular journals, because both are
among the most prestigious journals in their respec-
tive areas, so the articles found in these journals
should presumably reflect methodologically rigorous
work.

In our review, we examined every article published
in these journals during the specified time period to
determine if any of the statistical analyses reported in
the article addressed an exploratory factor analytic
question. If one or more analyses of this type was
conducted, we then examined the description of each
analysis. Studies were coded for the ratio of measured
variables to factors, average reliability (or communal-
ity) of the measured variables, sample size, examina-
tion of common factors versus principal components,
model-fitting procedure, method for determining the
number of factors, and rotation procedure. The results
of this review are presented in Table 7. The first two
columns of the table indicate the number of articles
and corresponding percentage of total number of ar-
ticles falling into each category for JPSP. The third
and fourth columns present the same information for
JAP.

There are several aspects of these results that merit
commentary. First, our review indicates that EFA
continues to be an extremely popular statistical pro-
cedure in psychological research. A total of 159 of the
883 articles published in 60 issues of JPSP over a
5-year period reported EFAs. A total of 58 of 455
articles published in 30 issues of JAP over the same
5-year period reported EFAs. Thus, the typical issue
of these journals contained two or three articles using
EFA.

The first section of Table 7 shows the distribution
of variable to factor ratios. These results indicate that
the great majority of analyses were based on ratios of
at least 4; 1. Thus, in most analyses, factors were prob-
ably adequately overdetermined. However, there was
a nontrivial number of articles (i.e., about one in five)
with ratios below 4:1. This finding is noteworthy,
because one condition in which PCAs produce sub-
stantially inflated estimates of factor loadings is when
the ratio is 3:1 or less (Widaman, 1993).

The next section of Table 7 shows the distribution
of the average reliability of measured variables in
analyses. These results show that when researchers
reported the reliability of their measured variables, the
values were generally high (i.e.. .70 or greater). One
might conclude from this finding that the psychomet-
ric properties of variables analyzed in EFA are typi-
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Table 7
Summary Information of Current Practices in the Use of
Factor Analysis

Journal of
Personality
and Social
Psychology

Variable

Ratio of variable to factors
Less than 3:1
3:1
4:1
5:1
6:1
More than 6: 1
Unknown

N

1
28
26
14
13
74

2

%

0.6
17.6
16.4
8.8
8.2

46.5
1.3

Journal of
Applied

Psychology

N

1
9

10
10
6

18
4

%

1.7
15.5
17.2
17.2
10.3
31.0
6.9

Average reliability of variables
Less than .60
.60-.69
.70-79
.80-.89
.90-1.00
Unknown

Sample size
100 or less
101-200
201-300
301^00
More than 400

Type of analysis
Principal components
Common factors
Multiple methods
Other
Unknown

Factor-component number
Eigenvalue > 1 .0
Scree Test
Parallel analysis
Model fit
Theory
Interpretability
Multiple methods
Other
Unknown

Factor-component rotation
Varimax
Harris-Kaiser
Promax
Direct quartimin
No rotation
Multiple methods
Other
Unknown

3
6

33
33
14
70

30
44
25
13
47

84
31

8
1

35
procedure

25
24

1
0
2
4

35
2

66

87
1
2

21
23

3
1

21

1.9
3.8

20.8
20.8

8.8
44.0

18.9
27.7
15.7
8.2

29.6

52.8
19.5
5.0
0.6

22.0

15.7
15.1
0.6
0.0
1.3
2.5

22.0
1.3

41.5

54.7
0.6
1.3

13.2
14.5

1.9
0.6

13.2

2
5
9

11
9

22

8
14
9
2

25

28
13
2

0
15

11
9
0
0
4
0

12
0

22

28
1
2
9
4
2
0

12

3.4
8.6

15.5
19.0
15.5
37.9

13.8
24.1
15.5
3.4

43.1

48.3
22.4
3.4
0.0

25.9

19.0
15.5
0.0
0.0
6.9
0.0

20.7
0.0

37.9

48.3
1.7
3.4

15.5
6.9
3.4
0.0

20.7

cally quite good. However, in both journals about
40% of analyses did not include reports of the reli-
ability of the measured variables. A large number of
the analyses in which reliabilities were not reported
involved single-item measures, whereas those for
which reliabilities were reported involved multi-item
measures. Because single-item variables are likely to
be considerably less reliable than multi-item vari-
ables, it seems probable that many of the analyses
reported in these journals were based on variables
with less than optimal psychometric properties. Also
of interest is the fact that we found virtually no cases
in which authors reported the communalities of their
measured variables. This practice is unfortunate given
that, in some ways, the communalities are more in-
formative than the reliabilities regarding the sound-
ness of the EFA results. However, for 18 data sets we
were able to obtain the correlation matrices on which
the authors' factor analyses were based. This allowed
us to index the communalities by examining the
squared multiple correlations associated with each
data set. The average communality associated with
each data set ranged from .12 to .65 with the median
of these averages being .425.

The third section of Table 7 presents the distribu-
tion of sample sizes across articles. More than a third
of the articles across the two journals conducted EFA
based on modest-to-small sample sizes (i.e., samples
of 200 or less). A somewhat smaller number of ar-
ticles used moderate sample sizes (i.e., 201 to 400),
and about a third or more used large samples (i.e.,
greater than 400). Thus, there was a substantial num-
ber of articles based on sample sizes sufficiently small
that results could have been distorted if the measured
variables included in the analysis were less than op-
timal or the factors were underdetermined.

The next section of Table 7 indicates the greater
popularity of PCA relative to EFA. Approximately
half of the published applications reported using the
PCA method. This method was used despite the fact
that in the vast majority of these articles, the primary
goal was to identify latent constructs underlying mea-
sured variables rather than data reduction per se. In
contrast, only about 20% of analyses used some form
of EFA (with some type of principal factors analysis
accounting for three out of every four articles using
common factor analysis). In approximately a fourth of
the articles in both journals, it was impossible to de-
termine what method was used.

The next section of Table 7 reports the distribution
of articles across different procedures for determining
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the number of factors. The eigenvalue-greater-than-1
rule was the most popular single procedure in both
journals, followed closely by the scree test. Use of
other methods of determining the number of factors
was relatively rare. A fairly sizable number of articles
(i.e., about 20%) reported using multiple methods. In
the overwhelming majority of these cases, multiple
methods involved some combination of the eigenval-
ues-greaier-than-1 rule, scree test, or factor interpret-
ability-a priori theory. However, it was extremely
common (i.e., about 40% of the time) for authors to
fail to clearly indicate how they arrived at their deci-
sions as to the number of factors to include.

The final section of Table 7 provides the distribu-
tion of articles across different methods of rotation.
Varimax rotation was clearly the most commonly
used rotation with approximately half of all factor
analyses in both journals using this procedure. The
second most popular method of rotation was direct
quartimin although this rotation was used in only
about a third to a fourth as many articles as varimax
rotation. A nontrivial number of articles (i.e., 13% to
21%) failed to indicate the rotation used.

When viewed in their entirety, the results reported
in Table 7 are discouraging. A fair number of analyses
were based on studies in which at least one design
feature was marginal (i.e., low measured variable to
factor ratios, modest sample sizes, or both). A sizable
number of analyses provided no information regard-
ing the psychometric properties of the measured vari-
ables. Trie most popular types of analysis and rotation
(i.e., PC A and varimax rotation) were not optimal or
even ne;;.r-optimal choices. In the case of determining
the number of factors, the largest proportion of pub-
lished articles indicated that multiple methods were
used. Such an approach seems sensible in light of the
methodological literature. However, exclusive use of
the largely discredited eigenvalues-greater-than-1 rule
was the second most popular choice. Thus, it appears
that the same poor choices found to be problematic in
the methodological literature and demonstrated to
produce the misleading results in our examples are
popular among researchers. Equally disconcerting, the
results in Table 7 indicated that researchers often
failed to provide adequate information about the pro-
cedures used. In 15.7% of JPSP factor analyses and
22.4% of JAP factor analyses it was impossible to
determine what procedures were used for at least two
of the three major analytic decisions. In more than
half of all factor analyses reviewed, information was
not provided concerning at least one of the decisions.

Implications of Current Practices for
Psychological Research

Given the prevalence of poor decision making by
researchers in the use of EFA, many readers might
wonder what the implications of such practices are for
the interpretations and conclusions reached in these
articles. A precise answer to this question is not pos-
sible. Although the methodological literature suggests
(and the examples presented in this article illustrate)
that different choices in designing studies and select-
ing factor analytic procedures can produce substantial
differences in results, there are clearly many cases in
which this does not occur. The methodological litera-
ture has delineated some of the conditions under
which differences in procedures will produce substan-
tial differences in results. However, understanding of
these issues is far from complete. Furthermore, in
many cases, it is impossible to know how often these
conditions exist in actual data. One method for an-
swering this question would be to conduct compre-
hensive reanalyses of published data sets. Unfortu-
nately, such an approach is not practical. Beyond the
fact that such a study would require the reanalysis of
hundreds of data sets, access to data sets is very dif-
ficult. It is relatively rare for researchers to report the
correlation matrix on which their factor analyses are
based, and requesting access to data is often unsuc-
cessful.13

Nonetheless, we were able to address this question
in a somewhat informal manner by reanalyzing those
data sets for which we had access to the correlation
matrices (a total of 18 data sets). These analyses re-
vealed a number of cases in which extracting factors
versus components, using different procedures to de-
termine the number of factors, or using different ro-
tation methods produced changes in results suffi-
ciently substantial to have altered the conclusions a

11 Interestingly, when we contacted authors to request
their data, we found that a relatively small proportion of
them agreed to our request. In the majority of cases, authors
did not answer our request even after reminder letters were
sent. In other cases, authors indicated that the data were no
longer available. Finally, in a few cases, authors indicated
that they would send the data but did not or directly refused
to send the data at all. This last situation is particularly
interesting given that current APA ethical guidelines specify
that authors publishing in APA journals must make their
data available to third parties for a period of 5 years fol-
lowing publication.
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researcher might have reached concerning the data.
For example, we compared the solutions produced by
ML factor analysis and PCA for models with the same
number of factors retained by the authors and using a
rotation comparable to that used by the authors. We
found that there were differences between PCA and
ML sufficiently substantial that a researcher could
have reached a different interpretation of the factors in
5 of the 18 data sets. That is, for 5 of these data sets,
one or more measured variables changed the factors
on which they had their primary loadings across the
two types of analysis. Interestingly, for 4 of the data
sets, it was impossible to compare the PCA and ML
solutions. The solutions could not be compared, be-
cause the authors in their original analyses retained so
many components relative to the number of measured
variables that the corresponding ML factor analysis
models would have had negative degrees of freedom.

Using the same models (i.e., common factor or
principal component) and fitting procedures used by
:he authors and the same number of factors retained
by the authors, we also compared varimax rotation
and direct quartimin rotation. We found that direct
quartimin rotations often produced slightly better
simple structure than varimax rotation when the fac-
lors were correlated, but the pattern of loadings was
substantially different (i.e., there were changes in the
factors on which one or more of the measured vari-
ables had their primary loadings) in only 1 of the data
sets.

Finally, using the eigenvalues-greater-than-1 rule,
-cree test, and model fit (as indexed by RMSEA), we
also examined the issue of the appropriate number of
factors. In 7 of the 18 data sets, the scree test, model
T i t , or both contradicted the eigenvalues-greater-
i.han-1 rule. Interestingly, when we examined the re-
sults of the scree test and model fit (two of the better
procedures for determining the number of factors), we
found that the results often contradicted the decisions
made by the authors in the original articles. In 3 of the
data sets, both model fit and the scree test clearly
suggested a different number of factors than that re-
tained by the authors. In 5 of the data sets, model fit
clearly suggested a different number of factors. In 1
data set, the scree test clearly suggested an alternative
number of factors.14

Although this small sample of data sets cannot be
regarded as ful ly representative of the entire applied
EFA literature, it does suggest that differences in re-
sults due to changes in EFA procedures might be
more common than many researchers realize. Addi-

tionally, our survey indicated that many researchers
made more than one poor decision. The combination
of several poor decisions is likely to produce even
more serious distortions. For example, it was rela-
tively common for researchers to conduct a PCA, re-
tain as many factors as eigenvalues greater than 1, and
conduct a varimax rotation. This particular "package"
of decisions is especially likely to result in poor re-
covery of the underlying factors.IS

General Discussion

We began our article by noting that researchers
must consider five major methodological issues when
conducting a factor analysis. We argued that the
methodological literature suggests that not all options
available to researchers for each of these decisions are
equally sound and that poor choices in designing the
study and conducting the factor analysis can produce
poor results. To further illustrate this point, we reana-
lyzed previously published data sets and showed that
the (mis)use of EFA can produce misleading results.
We demonstrated that the misleading results obtained
in these analyses did not really reflect a fundamental
weakness in EFA but instead demonstrated the con-
sequences of using questionable analytic procedures.
We then went on to establish that the same question-
able procedures used in our examples are in fact quite
prevalent in current empirical research using factor
analysis.

We believe that our review highlights two impor-
tant points that should be brought to the attention of
researchers using EFA and to readers of articles in
which EFAs are reported. First, contrary to what
many researchers probably believe, the decisions in
the design of studies and in selecting factor analytic
procedures are not arbitrary and inconsequential.
There is reason to consider some design features and

14 In those cases in which model fit clearly contradicted
either the eigenvalues-greater-than-1 rule or the original de-
cisions made by the authors but the scree test did not, it was
almost never the case that the scree test supported the eig-
envalues-greater-than-1 rule or the original decision. In-
stead, in these cases, the scree test was sufficiently ambigu-
ous that it was difficult to argue that it clearly indicated an
appropriate number of factors.

1? It is perhaps not surprising that this particular choice of
options is so popular. This set of decisions are the default
options for the factor analysis procedure in SPSS.
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EFA procedures to be markedly better than others.
Second, this article suggests that the quality of EFAs
reported in psychological research is routinely quite
poor. Researchers sometimes base their analyses on
studies with less than optimal features, commonly
make questionable choices when selecting analytic
procedures, and do not provide sufficient information
for readers to make informed judgements of the
soundness of the EFA being reported.

One obvious question that arises from these obser-
vations is why factor analysis is so poorly used. There
are several possible reasons. One is that researchers
are ill-informed regarding the use of EFA. Although
there is a substantial methodological literature on
EFA, much of this literature is relatively complex and
published in quantitatively oriented journals that most
psychologists are unlikely to read on a regular basis.
With a few exceptions (e.g., Finch & West, 1997),
nontechnical, concise, and up-to-date reviews of this
literature have generally not been available to re-
searchers. Furthermore, most researchers probably re-
ceive little formal training in EFA. Although it is
common for graduate programs to require their stu-
dents to take courses on the use of analysis of variance
(ANOVA), it is much rarer for this to be the case for
EFA (-,ee Aiken, West, Sechrest, & Reno, 1990).
Many graduate programs do not offer courses that
cover factor analysis or devote only 1 week or 2 to
this topic as part of a broad survey course covering
different multivariate statistical procedures. There-
fore, it is not surprising that many researchers are
relatively uninformed regarding the implications of
study design features and choosing different factor
analytic procedures.

A second major reason why factor analyses are
poorly conducted is simple tradition. There is a strong
tendency for researchers to conduct analyses in a
manner that is similar to what has been done before.
Researchers do so because (a) they wish for their re-
sults to be directly comparable to past studies, (b) they
naively believe that procedures must be reasonable if
so many people have used them in the past, or (c) they
feel (perhaps correctly) that the surest way to avoid
difficulties in the peer review process is to do what
has been done before.

Finally, another reason for the poor use of EFA has
to do w ith the statistical software currently popular in
psychological research. Such programs are likely to
exert a tremendous influence on the way analyses are
conducted. For example, many researchers probably
follow the default options of their programs, because

they believe that these options would not be the de-
faults unless they were the most acceptable methods
currently available. Additionally, if a particular pro-
cedure is not offered in these programs, it is unlikely
that a researcher will or can even be expected to use
it. Unfortunately, the factor analytic procedures of-
fered in the major statistical programs are far from
ideal (e.g., see MacCallum, 1983; Wood et al., 1996).
Given the inadequacies of these programs, it is not
surprising that factor analyses conducted in psycho-
logical research are often far from optimal.

Although it is relatively easy to understand why
EFA is often misused, it is more difficult to formulate
how such practices might be changed. It seems un-
likely that psychology departments will be able or
willing to invest the resources necessary to substan-
tially upgrade their statistics courses. However, meth-
odologists could accept a greater responsibility for
educating the research community regarding the use
of EFA and other statistical procedures. This would
require them not only to write highly technical papers
targeted at the quantitative methodology community
(which are undeniably important) but also to write
less technical papers clearly explaining the practical
implications of this methodological research. Further-
more, editors must be willing to publish these articles
in nonquantitative journals that are likely to be read
by researchers. The use of EFA might also be im-
proved by editors of journals adopting higher stan-
dards for the manner in which factor analyses are
conducted and reported. At the very least, researchers
should be required to report what procedures they
used when conducting an EFA. Researchers should
also be expected to offer a brief rationale for their
design decisions and choices of EFA procedures. Fi-
nally, developers and users of EFA should more ac-
tively pressure the manufacturers of the major statis-
tical programs to improve their products. Taken
together, these initiatives would be a good start to-
ward improving the use of EFA in psychological re-
search.
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