
4
Introduction to Matrix

Algebra

In the previous chapter, we learned the algebraic results that form the founda-
tion for the study of factor analysis and structural equation modeling. These
results, powerful as they are, are somewhat cumbersome to apply in more
complicated systems involving large numbers of variables. Matrix algebra
provides us with a new mathematical notation that is ideally suited for de-
veloping results involving linear combinations and transformations. Once we
have developed a few basic results and learned how to use them, we will be
ready to derive the fundamental equations of factor analysis and structural
modeling.

4.1 BASIC TERMINOLOGY

Definition 4.1 (Matrix) A matrix is defined as an ordered array of numbers, of
dimensions p,q.

Our standard notation for a matrix A of order p, q will be:

pAq

There are numerous other notations. For example, one might indicate a
matrix of order p, q as A (p × q). Frequently, we shall refer to such a matrix
as “a p × q matrix A.”
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On occasion, we shall refer explicitly to the elements of a matrix (i.e., the
numbers or random variables in the array). In this case, we use the following
notation to indicate that “A is a matrix with elements aij”.

A = {aij}
When we refer to element aij , the first subscript will refer to the row

position of the elements in the array. The second subscript (regardless of
which letter is used in this position) will refer to the column position. Hence,
a typical matrix pAq will be of the form:

A =




a11 a12 a13 · · · a1q

a21 a22 a23 · · · a2q

a31 a32 a33 · · · a3q

...
...

...
...

...
ap1 ap2 ap3 · · · apq




We shall generally use bold capital letters to indicate matrices, and employ
lower case letters to signify elements of an array, except where clarity dictates.
In particular, we may find it convenient, when referring to matrices of random
variables, to refer to the elements with capital letters, so we can distinguish
notationally between constants and random variables.

Definition 4.2 (Column Vector) A column vector of numbers or random
variables will be a matrix of order p×1. We will, in general, indicate column vectors
with the following notation:

px1

Definition 4.3 (Row Vector) A row vector of numbers or random variables
will be a matrix of order 1 × q. We will, in general, indicate row vectors with the
following notation:

1x
′
q

A column vector with all elements equal to one will be symbolized as either
j or 1.

Note how we reserve the use of boldface for matrices and vectors.

4.1.1 Special Matrices

We will refer occasionally to special types of matrices by name. For any pAq,

1. If p �= q, A is a rectangular matrix.

2. If p = q, A is a square matrix.
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3. In a square matrix, the elements aii, i = 1, p define the diagonal of the
matrix.

4. A square matrix is lower triangular if aij = 0 for i < j.

5. A square matrix is upper triangular if aij = 0 for i > j.

6. A square matrix is a diagonal matrix if aij = 0 for i �= j

7. A square matrix is a scalar matrix if it is a diagonal matrix and all
diagonal elements are equal.

8. An identity matrix is a scalar matrix with diagonal elements equal to
one. We use the notation Ip to denote a p × p identity matrix.

9. 0, a matrix composed entirely of zeros, is called a null matrix.

10. A square matrix A is symmetric if aij = aji for all i, j.

11. A 1 × 1 matrix is a scalar.

Example 4.1 (Special Matrices) Some examples follow:

1. A rectangular matrix [
1 2 3 4
5 6 7 8

]

2. A square matrix [
1 2
3 4

]

3. A lower triangular matrix




1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10




4. An upper triangular matrix




1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10




5. A diagonal matrix 
 1 0 0

0 2 0
0 0 7
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6. A scalar matrix 
 2 0 0

0 2 0
0 0 2




7. A symmetric matrix 
 1 2 3

2 2 4
3 4 2




4.1.2 Partitioning of Matrices

In many theoretical discussions of matrices, it will be useful to conceive of a
matrix as being composed of sub-matrices. When we do this, we will “parti-
tion” the matrix symbolically by breaking it down into its components. The
components can be either matrices or scalars. Here is a simple example.

Example 4.2 (A Simple Partitioned Matrix) In discussions of simple
multiple regression, where there is one criterion variable Y and p predictor variables
that can be placed in a vector x, it is common to refer to the correlation matrix of
the entire set of variables using partitioned notation, as follows:

R =

[
1 r′Y x

rxY Rxx

]

In the above notation, the scalar 1 refers to the correlation of the Y variable
with itself. The row vector r′Y x refers to the set of correlations between the
variable Y and the set of p random variables in x. Rxx is the p × p matrix
of correlations of the predictor variables. We will refer to the “order” of the
“partitioned form” as the number of rows and columns in the partitioning,
which is distinct from the number of rows and columns in the matrix being
represented. For example, suppose there were p = 5 predictor variables in
Example 4.2. Then the matrix R is a 6 × 6 matrix, but the example shows a
“2 × 2 partitioned form.”

When matrices are partitioned properly, it is understood that “pieces” that
appear to the left or right of other pieces have the same number of rows, and
pieces that appear above or below other pieces have the same number of
columns. So, in the above example, Rxx, appearing to the right of the p × 1
column vector rxY , must have p rows, and since it appears below the 1 × p
row vector r′Y x, it must have p columns. Hence, it must be a p × p matrix.
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4.2 SOME MATRIX OPERATIONS

In this section, we review the fundamental operations on matrices.

4.2.1 Matrix (and Vector) Addition and Subtraction

For the addition and subtraction operations to be defined for two matrices A,
B, they must be conformable.

Definition 4.4 (Conformability for Addition and Subtraction) Two
matrices are conformable for addition and subtraction if and only if they are of the
same order.

Definition 4.5 (Matrix Addition) Let A = {aij} and B = {bij}. Let A and
B be conformable. The sum A + B = C is defined as:

C = A + B = {cij} = {aij + bij}

Definition 4.6 (Matrix Subtraction) Let A = {aij} and B = {bij}. Let A
and B be conformable. The sum A − B = C is defined as:

C = A − B = {cij} = {aij − bij}

Comment. Matrix addition and subtraction are natural, intuitive exten-
sions to scalar addition and subtraction. One simply adds elements in the
same position.

Example 4.3 (Matrix Addition) Let A =


 1 4 5

2 3 4
4 4 0


, and B =


 3 2 1

2 3 1
1 3 2


.

Find C = A + B and D = A − B.

Solution. C =


 4 6 6

4 6 5
5 7 2


 D =


 −2 2 4

0 0 3
3 1 −2




Definition 4.7 (Matrix Equality) Two matrices are equal if and only if they
are of the same row and column order, and have all elements equal.

Matrix addition has some important mathematical properties, which, for-
tunately, mimic those of scalar addition and subtraction. Consequently, there
is little “negative transfer” involved in generalizing from the scalar to the
matrix operations.
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Result 4.1 (Properties of Matrix Addition) For matrices A, B, and C,
properties include:

1. Associativity
A + (B + C) = (A + B) + C

2. Commutativity
A + B = B + A

3. There exists a “neutral element” for addition, i.e., the null matrix 0,
such that A + 0 = A.

4. There exist inverse elements for addition, in the sense that for any ma-
trix A, there exists a matrix −A, such that A + −A = 0.

4.2.2 Scalar Multiples and Scalar Products

In the previous section, we examined some matrix operations, addition and
subtraction, that operate very much like their scalar algebraic counterparts.
In this section, we begin to see a divergence between matrix algebra and scalar
algebra.

Definition 4.8 (Scalar Multiplication) Given a matrix A = {aij}, and a
scalar c. Then B = cA = {caij} is called a scalar multiple of A.

Comment. Scalar multiples are not to be confused with scalar products,
which will be defined subsequently. Scalar multiplication is a simple idea —
multiply a matrix by a scalar, and you simply multiply every element of the
matrix by the scalar.

Example 4.4 (Scalar Multiple) Let A =

[
2 −1
3 4

]
. Then 2A =

[
4 −2
6 8

]
.

Result 4.2 (Properties of Scalar Multiplication) For matrices A and
B, and scalars a and b, scalar multiplication has the following mathemati-
cal properties:

1. (a + b)A = aA + bA

2. a(A + B) = aA + aB

3. a(bA) = (ab)A

4. aA = Aa
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Definition 4.9 (Scalar Product) Given row vector 1a
′
p and pb1. Let a′ = {ai}

and b = {bi}. The scalar product a′b is defined as

a′b =
∑

i

aibi

Note: This is simply the sum of cross products of the elements of the two vectors.

Example 4.5 (Scalar Product) Let a′ =
[

1 2 3
]
. Let b =


 4

2
1


.

Then a′b = 11.

4.2.3 Matrix Multiplication

Matrix multiplication is an operation with properties quite different from its
scalar counterpart. To begin with, order matters in matrix multiplication.
That is, the matrix product AB need not be the same as the matrix product
BA. Indeed, the matrix product AB might be well-defined, while the product
BA might not exist. To begin with, we establish the fundamental property
of conformability.

Definition 4.10 (Conformability for Matrix Multiplication) pAq and

rBs are conformable for matrix multiplication if and only if q = r.

The matrix multiplication operation is defined as follows.

Definition 4.11 (Matrix Multiplication) Let pAq = {aij} and qBs = {bjk}.
Then pCs = AB = {cik} where:

cik =

q∑
j=1

aijbjk

Example 4.6 (The Row by Column Method) The meaning of the formal
definition of matrix multiplication might not be obvious at first glance. Indeed,
there are several ways of thinking about matrix multiplication. The first way, which
I call the row by column approach, works as follows. Visualize pAq as a set of p row
vectors and qBs as a set of s column vectors. Then if C = AB, element cik of C
is the scalar product (i.e., the sum of cross products) of the ith row of A with the

kth column of B. For example, let A =


 2 4 6

5 7 1
2 3 5


, and let B =


 4 1

0 2
5 1


.
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Then C = AB =


 38 16

25 20
33 13


. Consider element c21, which has a value of 25. This

element, which is in the second row and first column of C, is computed by taking
the sum of cross products of the elements of the second row of A with the first
column of B. That is, (5 × 4) + (7 × 0) + (1 × 5) = 25.

Result 4.3 (Properties of Matrix Multiplication) The following are some
key properties of matrix multiplication:

1. Associativity.
(AB)C = A(BC)

2. Not generally commutative. That is, often AB �= BA.

3. Distributive over addition and subtraction.

C(A + B) = CA + CB

4. Assuming it is conformable, the identity matrix I functions like the num-
ber 1, that is pAqIq = A, and pIpAq = A.

5. AB = 0 does not necessarily imply that either A = 0 or B = 0.

Several of the above results are surprising, and result in negative transfer
for beginning students as they attempt to reduce matrix algebra expressions.

Example 4.7 (A Null Matrix Product) The following example shows that
one can, indeed, obtain a null matrix as the product of two non-null matrices. Let

a′ =
[

6 2 2
]
, and let B =


 −8 12 12

12 −40 4
12 4 −40


. Then a′B =

[
0 0 0

]
.

Definition 4.12 (Pre-multiplication and Post-multiplication) When we
talk about the “product of matrices A and B,”it is important to remember that
AB and BA are usually not the same. Consequently, it is common to use the terms
“pre-multiplication” and “post-multiplication.” When we say “A is post-multiplied
by B,” or “B is pre-multiplied by A,” we are referring to the product AB. When
we say “B is post-multiplied by A,” or “A is pre-multiplied by B,” we are referring
to the product BA.

4.2.4 Matrix Transposition

“Transposing” a matrix is an operation which plays a very important role in
multivariate statistical theory. The operation, in essence, switches the rows
and columns of a matrix.



SOME MATRIX OPERATIONS 61

Definition 4.13 (Transpose of a Matrix) Let pAq = {aij}. Then the
transpose of A, denoted A′, is defined as

qA
′
p = {aji}

Comment. The above notation may seem cryptic to the beginner, so some
clarification may be useful. The typical element of A is aij . This means that,
in the i,j position of matrix A is found element aij . Suppose A is of order
3 × 3. Then it can be written as

A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33




A′ is a matrix with typical element aji. This means that, in the i,j position
of matrix A′ is found element aji of the original matrix A. For example,
element 2,1 of A′ is element 1,2 of the original matrix. So, in terms of the
elements of the original A, the transpose has the representation

A′ =


 a11 a21 a31

a12 a22 a32

a13 a22 a33




Studying the above element-wise representation, you can see that trans-
position does not change the diagonal elements of a matrix, and constructs
columns of the transpose from the rows of the original matrix.

Example 4.8 (Matrix Transposition)

Let A =

[
1 2 3
1 4 5

]
. Then A′ =


 1 1

2 4
3 5




Result 4.4 (Properties of Matrix Transposition) Here are some frequently
used properties of the matrix transposition operation:

1. (A′)′ = A

2. (cA)′ = cA′

3. (A + B)′ = A′ + B′

4. (AB)′ = B′A′

5. A square matrix A is symmetric if and only if A = A′.

Comment. You should study the above results carefully, as they are used
frequently in reducing and simplifying matrix algebra expressions.
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4.2.5 Linear Combinations of Matrix Rows and Columns

We have already discussed the “row by column” conceptualization of matrix
multiplication. However, there are some other ways of conceptualizing matrix
multiplication that are particularly useful in the field of multivariate statistics.
To begin with, we need to enhance our understanding of the way matrix
multiplication and transposition works with partitioned matrices.

Definition 4.14 (Multiplication and Transposition of Partitioned Ma-
trices) Being able to transpose and multiply a partitioned matrix is a skill that
is important for understanding the key equations of structural equation modeling.
Assuming that the matrices are partitioned properly, the rules are quite simple:

1. To transpose a partitioned matrix, treat the sub-matrices in the partition as
though they were elements of a matrix, but transpose each sub-matrix. The
transpose of a p × q partitioned form will be a q × p partitioned form.

2. To multiply partitioned matrices, treat the sub-matrices as though they were
elements of a matrix. The product of p × q and q × r partitioned forms is a
p × r partitioned form.

Some examples will illustrate the above definition.

Example 4.9 (Transposing a Partitioned Matrix)
Suppose A is partitioned as

A =


 C D

E F
G H




Then

A′ =

[
C′ E′ G′

D′ F′ H′

]

Example 4.10 (Product of two Partitioned Matrices) Suppose A =[
X Y

]
and B =

[
G
H

]
. Then AB = XG + YH .

Example 4.11 (Linearly Combining Columns of a Matrix) Consider
an N × p matrix X, containing the scores of N persons on p variables. One can
conceptualize the matrix X as a set of p column vectors. In “partitioned matrix
form,” we can represent X as

X =
[

x1 x2 x3 · · · xp

]
Now suppose one were to post-multiply X with a p× 1 vector b. The product is

a N ×1 column vector y. Utilizing the above results on multiplication of partitioned
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matrices, it is easy to see that the result can be written as follows.

y = Xb

=
[

x1 x2 x3 · · · xp

]



b1

b2

b3

...
bp




= b1x1 + b2x2 + b3x3 + · · · + bpxp

The above example illustrates a very general principle in matrix algebra.
If you wish to linearly combine a set of variables that are in the columns of
a matrix X, simply place the desired linear weights in a vector b, and post-
multiply X by b. We illustrate this below with a simple numerical example.

Example 4.12 (Computing Difference Scores) Suppose the matrix X
consists of a set of scores on two variables, and you wish to compute the difference
scores on the variables. Simply apply the linear weight +1 to the first column,
and −1 to the second column, by post-multiplying with a vector containing those
weights. Specifically

y = Xb

=


 80 70

77 79
64 64




[
+1
−1

]

= +1


 80

77
64


 − 1


 70

79
64




=


 10

−2
0




Example 4.13 (Computing Course Grades) Suppose the matrix X con-
tained grades on two exams, a mid-term and a final, and that the final exam is
counted twice as much as the mid-term in determining the course grade. In that
case, course grades might be computed using the linear weights +1/3 and +2/3.
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Specifically

y = Xb

=


 80 70

77 79
64 64


 [

+1/3
+2/3

]

= +1/3


 80

77
64


 + 2/3


 70

79
64




=


 73 1

3

78 1
3

64




In the preceding examples, we linearly combined columns of a matrix, using
post-multiplication by a vector of linear weights. Of course, one can perform
an analogous operation on the rows of a matrix by pre-multiplication with a
row vector of linear weights.

Example 4.14 (Linearly Combining Rows of a Matrix) Suppose we view
the p × q matrix X as being composed of p row vectors. If we pre-multiply X with
a 1 × p row vector b′, the elements of b′ are linear weights applied to the rows of
X. Specifically,

y′ = b′X

=
[

b1 b2 · · · bp

]



x′
1

x′
2

...
x′

p




= b1x
′
1 + b2x

′
2 + . . . + bpx

′
p

4.2.6 Sets of Linear Combinations

There is, of course, no need to restrict oneself to a single linear combina-
tion of the rows and columns of a matrix. To create more than one linear
combination, simply add columns (or rows) to the post-multiplying (or pre-
multiplying) matrix!

Example 4.15 (Taking the Sum and Difference of Two Columns) Sup-
pose the matrix X consists of a set of scores on two variables, and you wish to
compute both the sum and the difference scores on the variables. In this case, we
post-multiply by two vectors of linear weights, creating two linear combinations.
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Specifically

y = XB

=


 80 70

77 79
64 64


 [

+1 +1
+1 −1

]

=


 150 10

156 −2
128 0




Linear Combinations can be used to perform a number of basic operations
on matrices. For example, you can

1. Extract a column of a matrix;

2. Extract a row of a matrix;

3. Exchange rows and/or columns of a matrix;

4. Re-scale the rows and/or columns of a matrix by multiplication or divi-
sion.

5. Extract a particular single element from a matrix.

See if you can figure out, for yourself, before scanning the examples below,
how to perform the above 5 operations with linear combinations.

Example 4.16 (Extracting a Column of a Matrix) This is perhaps the
simplest case of a linear combination. Simply multiply the desired column by the
linear weight +1, and make the linear weights 0 for all other columns. So, for
example, 

 1 4
2 5
3 6


 [

0
1

]
=


 4

5
6




Comment. We can, if we wish, give such a matrix a formal name! (See definition
below.)

Definition 4.15 (Selection Vector) The selection vector s[i] is a vector with
all elements zero except the ith element, which is 1.

Example 4.17 (Extracting a Row of a Matrix) Just as we can extract
the ith column of a matrix by post-multiplication by s[i], we can extract the ith
row by pre-multiplication by s′[i]. In this case, we extract the second row by pre-
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multiplication by s′[2].

[
0 1 0

] 
 1 4

2 5
3 6


 =

[
2 5

]

Example 4.18 (Exchanging Columns of a Matrix) We can use two strate-
gically selected linear combinations to exchange columns of a matrix. Suppose we
wish to exchange columns 1 and 2 of the matrix from the previous example. Con-
sider a post-multiplying matrix of linear weights B. We simply make its first column
s[2], thereby selecting the second column of the matrix to be the first column of the
new matrix. We then make the second column of B the selection vector s[1], placing
the first column of the old matrix in the second column position of the new matrix.
This is illustrated below.

 1 4
2 5
3 6




[
0 1
1 0

]
=


 4 1

5 2
6 3




Comment. Exchanging rows of a matrix is an obvious generalization. Simply pre-
multiply by appropriately chosen (row) selection vectors.

Example 4.19 (Rescaling Rows and Columns of a Matrix) This is accom-
plished by post-multiplication and/or pre-multiplication by appropriately configured
diagonal matrices. Consider the following example.


 1 4

2 5
3 6




[
2 0
0 3

]
=


 2 12

4 15
6 18




Example 4.20 (Selecting a Specific Element of a Matrix) By selecting the
column of a matrix with post-multiplication, and the row with pre-multiplication,
one may, using two appropriately chosen selection vectors, “pick out” any element
of an array. For example, if we wished to select element X12, we would pre-multiply
by s[1] and post-multiply by s[2]. For example,

[
1 0 0

]

 1 4

2 5
3 6




[
0
1

]
= 4
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4.3 MATRIX ALGEBRA OF SOME SAMPLE STATISTICS

In this section, we show how matrix algebra can be used to express some
common statistical formulas in a succinct way that allows us to derive some
important results in multivariate analysis.

4.3.1 The Data Matrix

Suppose we wish to discuss a set of sample data representing scores for N
people on p variables. We can represent the people in rows and the variables
in columns, or vice-versa. Placing the variables in columns seems like a more
natural way to do things for the modern computer user, as most computer
files for standard statistical software represent the “cases” as rows, and the
variables as columns. Ultimately, we will develop the ability to work with
both notational variations, but for the time being, we’ll work with our data
in “column form,” i.e., with the variables in columns. Consequently, our
standard notation for a data matrix is NXp.

4.3.2 Converting to Deviation Scores

Suppose x is an N × 1 matrix of scores for N people on a single variable. We
wish to transform the scores in x to deviation score form. (In general, we will
find this a source of considerable convenience.) To accomplish the deviation
score transformation, the arithmetic mean x•, must be subtracted from each
score in x.

Let 1 be a N × 1 vector of ones. We will refer to such a vector on occasion
as a “summing vector,” for the following reason. Consider any vector x, for
example a 3 × 1 column vector with the numbers 1, 2, 3. If we compute 1′x,
we are taking the sum of cross-products of a set of 1’s with the numbers in x.
In summation notation,

1′x =
N∑

i=1

1ixi =
N∑

i=1

xi

So 1′x is how we express “the sum of the x’s” in matrix notation.
Consequently,

x• = (1/N)1′x

To transform x to deviation score form, we need to subtract x• from every
element of x. We can easily construct a vector with every element equal to
x• by simply multiplying the scalar x• by a summing vector. Consequently,
if we denote the vector of deviation scores as x∗, we have
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x∗ = x − 1x•

= x − 1
(

1′x
N

)
(4.1)

= x − 11′

N
x

= x −
(

11′

N

)
x

=
(
I − 11′

N

)
x (4.2)

= (I − P)x (4.3)
x∗ = Qx (4.4)

where
Q = I − P

and

P =
11′

N

Comment. A number of points need to be made about the above derivation:

1. You should study the above derivation carefully, making certain you
understand all steps.

2. You should carefully verify that the matrix 11′ is an N × N matrix
of 1’s, so the expression 11′/N is an N × N matrix with each element
equal to 1/N(Division of matrix by a non-zero scalar is a special case of
a scalar multiple, and is perfectly legal).

3. Since x can be converted from raw score form to deviation score form
by pre-multiplication with a single matrix, it follows that any particular
deviation score can be computed with one pass through a list of numbers.

4. We would probably never want to compute deviation scores in practice
using the above formula, as it would be inefficient. However, the formula
does allow us to see some interesting things that are difficult to see using
scalar notation (more about that later).

5. If one were, for some reason, to write a computer program using Equa-
tion 4.4, one would not need (or want) to save the matrix Q, for several
reasons. First, it can be very large! Second, no matter how large N is,
the elements of Q take on only two distinct values. Diagonal elements
of Q are always equal to (N − 1)/N , and off-diagonal elements are al-
ways equal to −1/N . In general, there would be no need to store the
numbers.
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Example 4.21 (The Deviation Score Projection Operator) Any vector
of N raw scores can be converted into deviation score form by pre-multiplication by
a “projection operator” Q. Diagonal elements of Q are always equal to (N − 1)/N ,
and off-diagonal elements are always equal to −1/N . Suppose we have the vector

x =


 4

2
0




Construct a projection operator Q such that Qx will be in deviation score form.
Solution. We have

Qx =


 2/3 −1/3 −1/3

−1/3 2/3 −1/3
−1/3 −1/3 2/3





 4

2
0




=


 2

0
−2




Example 4.22 (Computing the ith Deviation Score) An implication of
the preceding result is that one can compute the ith deviation score as a single linear
combination of the N scores in a list. For example, the 3rd deviation score in a list
of 3 is computed as [dx]3 = −1/3x1 − 1/3x2 + 2/3x3.

Let us now investigate the properties of the matrices P and Q that accom-
plish this transformation. First, we should establish an additional definition
and result.

Definition 4.16 (Idempotent Matrix) A matrix C is idempotent if C2 =
CC = C.

Theorem 4.1 If C is idempotent and I is a conformable identity matrix,
then I − C is also idempotent.

Proof. To prove the result, we need merely show that (I − C)2 = (I − C).
This is straightforward.

(I − C)2 = (I − C) (I − C)
= I2 − CI − IC + C2

= I − C − C + C

= I − C

�
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Recall that P is an N × N symmetric matrix with each element equal to
1/N . P is also idempotent, since:

PP =
11′

N

11′

N

=
11′11′

N2

=
1 (1′1)1′

N2

=
1 (N)1′

N2

=
11′ (N)

N2

= 11′ N

N2

=
11′

N
= P

The above derivation demonstrates some principles that are generally useful
in reducing simple statistical formulas in matrix form:

1. Scalars can be “moved through” matrices to any position in the expres-
sion that is convenient.

2. Any expression of the form x′y is a scalar product, and hence it is a
scalar, and can be moved intact through other matrices in the expres-
sion. So, for example, we recognized that 1′1 is a scalar and can be
reduced and eliminated in the above derivation.

You may easily verify the following properties:

1. The matrix Q = I − P is also symmetric and idempotent. (Hint: Use
Theorem 4.1.)

2. Q1 = 0 (Hint: First prove that P1 = 1.)

4.3.3 The Sample Variance and Covariance

Since the sample variance S2
X is defined as in Definition 3.6 as the sum of

squared deviations divided by N −1, it is easy to see that, if scores in a vector
x are in deviation score form, then the sum of squared deviations is simply
x∗′x∗, and the sample variance may be written

S2
X = 1/(N − 1)x∗′x∗ (4.5)
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If x is not in deviation score form, we may use the Q operator to convert
it into deviation score form first. Hence, in general,

S2
X = 1/(N − 1)x∗′x∗

= 1/(N − 1)Qx′Qx

= 1/(N − 1)x′Q′Qx,

since the transpose of a product of two matrices is the product of their trans-
poses in reverse order.

The expression can be reduced further. Since Q is symmetric, it follows
immediately that Q′ = Q, and (remembering also that Q is idempotent) that
Q′Q = Q. Hence

S2
X = 1/(N − 1) x′Qx

As an obvious generalization of the above, we write the matrix form for
the covariance between two vectors of scores x and y as

SXY = 1/(N − 1)x′Qy

Some times a surprising result is staring us right in the face, if we are only
able to see it. Notice that the sum of cross products of deviation scores can
be computed as

x∗′y∗ = (Qx)′ (Qy)
= x′Q′Qy

= x′Qy

= x′ (Qy)
= x′y∗

= y′x∗

Because products of the form QQ or QQ′ can be collapsed into a single Q,
when computing the sum of cross products of deviation scores of two variables,
one variable can be left in raw score form and the sum of cross products will
remain the same! This surprising result is somewhat harder to see (and prove)
using summation algebra.

In what follows, we will generally assume, unless explicitly stated otherwise,
that our data matrices have been transformed to deviation score form. (The
Q operator discussed above will accomplish this simultaneously for the case
of scores of N subjects on several, say p, variates.) For example, consider a
data matrix NXp, whose p columns are the scores of N subjects on p different
variables. If the columns of X are in raw score form, the matrix X∗ = QX
will have p columns of deviation scores.

We shall concentrate on results in the case where X is in “column variate
form,” i.e., is an N × p matrix. Equivalent results may be developed for “row
variate form” p × N data matrices which have the N scores on p variables
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arranged in p rows. The choice of whether to use row or column variate repre-
sentations is arbitrary, and varies in books and articles. One must, ultimately,
be equally fluent with either notation, although modern computer software
tends to emphasize column variate form.

4.3.4 The Variance-Covariance Matrix

Consider the case in which we have N scores on p variables. We define the
variance-covariance matrix Sxx to be a symmetric p×p matrix with element
sij equal to the covariance between variable i and variable j. Naturally, the
ith diagonal element of this matrix contains the covariance of variable i with
itself, i.e., its variance. As a generalization of our results for a single vector
of scores, the variance-covariance matrix may be written as follows. First, for
raw scores in column variate form:

Sxx = 1/(N − 1)X′QX

We obtain a further simplification if X is in deviation score form. In that
case, we have:

Sxx = 1/(N − 1)X′X

Note that some authors use the terms “variance-covariance matrix” and
“covariance matrix” interchangeably.

4.3.5 The Correlation Matrix

For p variables in the data matrix X, the correlation matrix Rxx is a p × p
symmetric matrix with typical element rij equal to the correlation between
variables i and j. Of course, the diagonal elements of this matrix represent the
correlation of a variable with itself, and are all equal to 1. Recall that all of
the elements of the variance-covariance matrix Sxx are covariances, since the
variances are covariances of variables with themselves. We know that, in order
to convert sij (the covariance between variables i and j) to a correlation, we
simply “standardize” it by dividing by the product of the standard deviations
of variables i and j. This is very easy to accomplish in matrix notation.

Specifically, let Dxx = diag (Sxx) be a diagonal matrix with ith diagonal
element equal to the variance of the ith variable in X. Then let D1/2 be a
diagonal matrix with elements equal to standard deviations, and D−1/2 be
a diagonal matrix with ith diagonal element equal to 1/si, where si is the
standard deviation of the ith variable. Then we may quickly verify that the
correlation matrix is computed as:

Rxx = D−1/2SxxD−1/2
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4.3.6 The Covariance Matrix

Given NXm and NYp, two data matrices in deviation score form. The covari-
ance matrix Sxy is a m × p matrix with element sij equal to the covariance
between the ith variable in X and the jth variable in Y. Sxy is computed as

Sxy = 1/(N − 1)X′Y

4.4 VARIANCE OF A LINEAR COMBINATION

In an earlier section, we developed a summation algebra expression for eval-
uating the variance of a linear combination of variables. In this section, we
derive the same result using matrix algebra.

We first note the following result.

Theorem 4.2 Given X, a data matrix in column variate deviation score
form. For any linear composite y = Xb, y will also be in deviation score
form.

Proof. The variables in X are in deviation score form if and only if the sum
of scores in each column is zero, i.e., 1′X = 0′. But if 1′X = 0′, then for any
linear combination y = Xb, we have, immediately,

1′y = 1′Xb

= (1′X)b
= 0′b
= 0

Since, for any b, the linear combination scores in y sum to zero, it must
be in deviation score form. �

We now give a result that is one of the cornerstones of multivariate statis-
tics.

Theorem 4.3 (Variance of a Linear Combination) Given X, a set of
N deviation scores on p variables in column variate form, having variance-
covariance matrix Sxx. The variance of any linear combination y = Xb may
be computed as

S2
y = b′Sxxb (4.6)
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Proof. Suppose X is in deviation score form. Then, by Theorem 4.2, so must
y = Xb, for any b. From Equation 4.5, we know that

S2
y = 1/(N − 1) y′y

= 1/(N − 1) (Xb)′ (Xb)
= 1/(N − 1) b′X′Xb

= b′ [
1/(N − 1) X′X

]
b

= b′Sxxb

�

This is a very useful result, as it allows to variance of a linear composite
to be computed directly from the variance-covariance matrix of the original
variables. This result may be extended immediately to obtain the variance-
covariance matrix of a set of linear composites in a matrix Y = XB. The
proof is not given as, it is a straightforward generalization of the previous
proof.

Theorem 4.4 (Variance-Covariance Matrix of Several Linear Combinations)
Given X, a set of N deviation scores on p variables in column variate form,
having variance-covariance matrix Sxx. The variance-covariance matrix of
any set of linear combinations Y = XB may be computed as

SYY = B′SxxB (4.7)

In a similar manner, we may prove the following:

Theorem 4.5 (Covariance Matrix of Two Sets of Linear Combinations)
Given X and Y, two sets of N deviation scores on p and q variables in column
variate form, having covariance matrix Sxy. The covariance matrix of any
two sets of linear combinations W = XB and M = YC may be computed as

Swm = B′SxyC (4.8)

4.5 TRACE OF A SQUARE MATRIX

Traces play an important role in regression analysis and other fields of statis-
tics.

Definition 4.17 (Trace of a Square Matrix) The trace of a square matrix
A, denoted Tr (A), is defined as the sum of its diagonal elements, i.e.,

Tr (A) =

N∑
i=1

aii
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Result 4.5 (Properties of the Trace) We may verify that the trace has
the following properties:

1. Tr (A + B) = Tr (A) + Tr (B)

2. Tr (A) = Tr
(
A′)

3. Tr (cA) = cTr (A)

4. Tr
(
A′B

)
=

∑
i

∑
j aijbij

5. Tr
(
E′E

)
=

∑
i

∑
j e2

ij

6. The “cyclic permutation rule”:

Tr (ABC) = Tr (CAB) = Tr (BCA)

4.6 RANDOM VECTORS AND RANDOM MATRICES

In this section, we extend our results on linear combinations of variables to
random vector notation. The generalization is straightforward.

Definition 4.18 (Random Vector) A random vector ξ is a vector whose
elements are random variables.

One (informal) way of thinking of a random variable is that it is a process
that generates numbers according to some law. An analogous way of thinking
of a random vector is that it produces a vector of numbers according to some
law.

Definition 4.19 (Random Matrix) A random matrix Ψ is a matrix whose
elements are random variables.

Definition 4.20 (Expected Value of a Random Vector or Matrix) The
expected value of a random vector (or matrix) is a vector (or matrix) whose elements
are the expected values of the individual random variables that are the elements of
the random vector.

Example 4.23 (Expected Value of a Random Vector) Suppose, for
example, we have two random variables x and y, and their expected values are 0
and 2, respectively. If we put these variables into a vector ξ, it follows that

E (ξ) =

[
0
2

]
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Result 4.6 (Variance-Covariance Matrix of a Random Vector) Given
a random vector ξ with expected value µ, the variance-covariance matrix Σξξ
is defined as

Σξξ = E(ξ − µ)(ξ − µ)′ (4.9)

= E(ξξ′) − µµ′ (4.10)

If ξ is a deviation score random vector, then

Σξξ = E(ξξ′)

Comment. Result 4.6 frequently is confusing to beginners. Let’s “con-
cretize” it a bit by giving an example with just two variables.

Example 4.24 (Variance-Covariance Matrix) Suppose

ξ =

[
x1

x2

]

and

µ =

[
µ1

µ2

]

Note that ξ contains random variables, while µ contains constants. Computing
E(ξξ′), we find

E (
ξξ′) = E

([
x1

x2

] [
x1 x2

])

= E
([

x2
1 x1x2

x2x1 x2
2

])

=

[ E(x2
1) E(x1x2)

E(x2x1) E(x2
2)

]
(4.11)

In a similar vein, we find that

µµ′ =

[
µ1

µ2

] [
µ1 µ2

]

=

[
µ2

1 µ1µ2

µ2µ1 µ2
2

]
(4.12)

Subtracting Equation 4.12 from Equation 4.11, and recalling Equation 3.2, we
find

E(ξξ′) − µµ′ =

[ E(x2
1) − µ2

1 E(x1x2) − µ1µ2

E(x2x1) − µ2µ1 E(x2
2) − µ2

2

]

=

[
σ2

1 σ12

σ21 σ2
2

]
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Result 4.7 (Covariance Matrix for Two Random Vectors) Given two
random vectors ξ and η, their covariance matrix Σξη is defined as

Σξη = E (
ξη′) − E(ξ)E(η′) (4.13)

= E (
ξη′) − E(ξ)E(η)′ (4.14)

We now present some key results involving the “expected value algebra” of
random matrices and vectors.

Result 4.8 (Expected Value of A Linear Combination) As a general-
ization of results we presented in scalar algebra, we find that, for a matrix of
constants B, and a random vector x,

E (
B′x

)
= B′E(x) = B′µ

Result 4.9 (Expected Value of Sums of Random Vectors) For random
vectors x and y, we find

E (x + y) = E(x) + E(y)

Comment. The result obviously generalizes to the expected value of the
difference of random vectors.

Result 4.10 (Expected Value Algebra for Random Vectors) Some key
implications of the preceding two results, which are especially useful for reduc-
ing matrix algebra expressions, are the following:

1. The expected value operator distributes over addition and/or subtraction
of random vectors and matrices.

2. The parentheses of an expected value operator can be “moved through”
multiplied matrices or vectors of constants from both the left and right
of any term, until the first random vector or matrix is encountered.

3. E(x′) = (E(x))′

Example 4.25 (Expected Value Algebra) As an example of Result 4.10,
we reduce the following expression. Suppose the Greek letters are random vectors
with zero expected value, and the matrices contain constants. Then

E (
A′B′ηξ′C

)
= A′B′E (

ηξ′) C

= A′B′ΣηξC

Theorem 4.6 (Variance-Covariance Matrix of Linear Combinations)
Given x, a random vector with p variables, having variance-covariance ma-
trix Σxx. The variance-covariance matrix of any set of linear combinations
y = B′x may be computed as

Σyy = B′ΣxxB (4.15)
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In a similar manner, we may prove the following:

Theorem 4.7 (Covariance Matrix of Two Sets of Linear Combinations)
Given x and y, two random vectors with p and q variables having covariance
matrix Σxy. The covariance matrix of any two sets of linear combinations
w = B′x and m = C′y may be computed as

Σwm = B′ΣxyC (4.16)

4.7 INVERSE OF A SQUARE MATRIX

For an N × N square matrix A, the inverse of A, A−1, exists if and only if
A is of full rank, i.e., if and only if no column of A is a linear combination of
the others. A−1 is the unique matrix that satisfies

A−1A = AA−1 = I

If a square matrix A has an inverse, we say that A is “invertible,” “non-
singular,” and “of full rank.” If the transpose of a matrix is its inverse, and
vice versa, i.e., AA′ = A′A = I, we say that the matrix A is orthogonal.

Result 4.11 (Properties of a Matrix Inverse) A−1 has the following prop-
erties:

1. (A′)−1 = (A−1)′

2. If A = A′, then A−1 = (A−1)′

3. The inverse of the product of several invertible square matrices is the
product of their inverses in reverse order. For example

(ABC)−1 = C−1B−1A−1

4. For nonzero scalar c, (cA)−1 = (1/c)A−1

5. For diagonal matrix D, D−1 is a diagonal matrix with diagonal elements
equal to the reciprocal of the corresponding diagonal elements of D.

4.8 BILINEAR AND QUADRATIC FORMS, RANK, AND LINEAR

DEPENDENCE

In this section, we discuss a number of terms related to the rank of a matrix,
a concept that is closely related to the dimensionality of a linear model.

Definition 4.21 (Bilinear Form) For a matrix A, a bilinear form is a scalar
expression of the form

b′Ac
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for vectors b and c.

Definition 4.22 (Quadratic Form) A quadratic form is a scalar expression
of the form

b′Ab

for vector b.

Definition 4.23 (Positive Definite Matrix) A matrix A is positive definite
if for any non-null b, the quadratic form b′Ab is greater than zero. Similarly, we
say that A is positive semidefinite if for any non-null b, the quadratic form b′Ab
is greater than or equal to zero.

Definition 4.24 (Linear Independence and Dependence) A set of p-
component vectors xi, i = 1, . . . , p is said to be linearly independent if there exists
no (non-zero) set of linear weights bi such that

p∑
i=1

bixi = 0

If a set of vectors is not linearly independent, then the vectors are linearly dependent.

Example 4.26 (Linear Dependence) Let x′ =
[

1 −1 2
]

, y′ =[
2 0 −1

]
, and z′ =

[
0 −2 5

]
. Then x, y, and z are linearly dependent

because z − 2x + y = 0.

Definition 4.25 (Rank of a Matrix) The rank of a matrix A, denoted
“Rank (A),” is the maximal number of linearly independent rows or columns in A.

Comment. In some theoretical discussions, reference is made to row rank
and column rank. The row rank of a matrix is equal to the number of linearly
independent rows in the matrix. The column rank of a matrix is equal to its
number of linearly independent columns. For any matrix A, row rank and
column rank are equal. If the row rank of a matrix is equal to its number of
rows, we say the matrix is of full row rank, and if its row rank is less than
its number of rows, we say it is of deficient row rank. Analogous terminology
holds for columns. If a matrix is square, we refer to it as full rank or deficient
rank, depending on whether or not it has the maximum possible number of
linearly independent rows and columns.

Result 4.12 (Some Properties of Rank) For any matrix A, we have

1. Rank
(
A′) = Rank (A).
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2. Rank
(
A′A

)
= Rank

(
AA′) = Rank (A).

3. For any conformable matrix B, Rank (AB) ≤ min (Rank (A) ,Rank (B)).

4. For any nonsingular, square matrix B, Rank (AB) = Rank (A).

4.9 DETERMINANT OF A SQUARE MATRIX

In this section, we define the determinant of a square matrix, and explore its
properties. The determinant of a matrix A is a scalar function that is zero
if and only if a matrix is of deficient rank. This fact is sufficient information
about the determinant to allow the reader to continue through much of the
remainder of this book. The remainder of this section is presented primarily
for mathematical completeness, and may be omitted on first reading.

Definition 4.26 (Determinant) The determinant of a square matrix A,
denoted Det (A) or |A|, is defined as follows:

1. For N ×N matrix A, form all possible products of N elements of the matrix
such that no two elements in any product are from the same row or column
of A. There are N ! such products available. For example, when N = 3,
the required products are the 6 quantities, a11a22a33, a12a23a31, a13a21a32,
a13a22a31, a11a23a32, a12a21a33.

2. Within each product, arrange the factors so that the row subscripts are in
natural order 1, 2, . . . , N , as in the example above.

3. Then examine the order in which the column subscripts appear. Specifically,
note how many times a larger number precedes a smaller number in the se-
quence of column subscripts for the product. For product pi, call this number
the ”number of inversions” ki.

4. The determinant is computed as

|A| =

N !∑
i=1

pi(−1)ki (4.17)

Example 4.27 (Some Simple Determinants) Applying the above formula
to a 3 × 3 matrix, we obtain

|A| = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33 (4.18)

For a 2 × 2 matrix, we have

|A| = a11a22 − a12a21 (4.19)
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Clearly, for N > 3, calculating the determinant using the basic formula
would be exceedingly tedious. However, if we define Mij as the determinant
of the matrix of order (N − 1)× (N − 1) obtained by crossing out the ith row
and jth column of A, we find that, for any row i,

|A| =
N∑

j=1

aijMij(−1)i+j (4.20)

Mij is referred to as a minor of A. If we define the cofactor Cij =
(−1)i+jMij , then we find that for any row i,

|A| =
N∑

j=1

aijCij , (4.21)

Also, for any column j,

|A| =
N∑

i=1

aijCij (4.22)

Result 4.13 (Selected Properties of Determinants) For any N×N ma-
trix A,

1. The determinant of a diagonal matrix or a triangular matrix is the prod-
uct of its diagonal elements.

2. If the elements of a single row or column of A multiplied by the scalar
c, the determinant of the new matrix is equal to c|A|. If every element
of A is multiplied by c, then |cA| = cN |A|.

3. If two columns (or rows) of A are interchanged, the sign of |A| is re-
versed.

4. If two columns or two rows of a matrix are equal, then |A| = 0 .

5. The determinant of a matrix is unchanged if a multiple of some column
is added to another column. A similar property holds for rows.

6. If all elements of a row or column of A are zero, then |A| = 0.

7. If A and B are both N × N , then |AB| = |A||B|.

8. The sum of the products of the elements of a given row of a square matrix
with the corresponding cofactors of a different row is equal to zero. A
similar result holds for columns.
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4.10 EIGENVALUES AND EIGENVECTORS OF A SQUARE MATRIX

The eigenvalues and eigenvectors of a square matrix play a key role in some
important operations in statistics. In particular, they are intimately con-
nected with the determination of the rank of a matrix, and the “factoring” of
a matrix into a product of matrices.

Definition 4.27 (Eigenvalues and Eigenvectors) For a square matrix A,
a scalar c and a vector v are an eigenvalue and associated eigenvector, respectively,
if and only if they satisfy the equation,

Av = cv (4.23)

Comment. There are infinitely many solutions to Equation 4.23 unless some
identification constraint is placed on the size of vector v. For example for any c
and v satisfying the equation, c/2 and 2v must also satisfy the same equation.
Consequently in eigenvectors are assumed to be “normalized,” i.e., satisfy
the constraint that v′v = 1. Eigenvalues ci are roots to the determinantal
equation

|A − cI| = 0 (4.24)

Result 4.14 (Properties of Eigenvalues and Eigenvectors) For N×N
matrix A with eigenvalues ci and associated eigenvectors vi,

1.

Tr (A) =
N∑

i=1

ci

2.

|A| =
N∏

i=1

ci

3. Eigenvalues of a symmetric matrix with real elements are all real.

4. Eigenvalues of a positive definite matrix are all positive.

5. If a N × N symmetric matrix A is positive semidefinite and of rank r,
it has exactly r positive eigenvalues and p − r zero eigenvalues.

6. The nonzero eigenvalues of the product AB are equal to the nonzero
eigenvalues of BA. Hence the traces of AB and BA are equal.

7. The characteristic roots of a diagonal matrix are its diagonal elements.

8. The scalar multiple bA has eigenvalue bci with eigenvector vi. (Proof:
Avi = civi implies immediately that (bA)vi = (bci)vi.)
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9. Adding a constant b to every diagonal element of A creates a matrix
A + bI with eigenvalues ci + b and associated eigenvectors vi. (Proof:
(A + bI)vi = Avi + bvi = civi + bvi = (ci + b)vi).

10. Am has cm
i as an eigenvalue, and vi as its eigenvector. Proof: Consider

A2vi = A(Avi) = A(civi) = ci(Avi) = cicivi = c2
i vi. The general

case follows by induction.

11. A−1, if it exists, has 1/ci as an eigenvalue, and vi as its eigenvector.
Proof: Avi = civi = vic. A−1Avi = vi = A−1vici. vi = A−1vici =
ciA−1vi. So (1/ci)vi = A−1vi.

12. For symmetric A, for distinct eigenvalues ci, cj with associated eigen-
vectors vi, vj, we have v′

ivj = 0. Proof: Avi = civi, and Avj = cjvj.
So v′

jAvi = civ′
jvi and v′

iAvj = cjv′
ivj. But, since a bilinear form

is a scalar, it is equal to its transpose, and, remembering that A = A′,
v′

jAvi = v′
iAvj. So civ′

jvi = cjv′
ivj = cjv′

jvi. If ci and cj are differ-
ent, this implies v′

jvi = 0.

13. For any real, symmetric A, there exists a V such that V′AV = D,
where D is diagonal. Moreover, any real, symmetric matrix A can be
written as A = VDV′, where V contains the eigenvectors vi of A in
order in its columns, and D contains the eigenvalues ci of A in the ith
diagonal position.

4.11 APPLICATIONS OF EIGENVALUES AND EIGENVECTORS

Eigenvalues and eigenvectors have widespread practical application in mul-
tivariate statistics. In this section, we demonstrate a few such applications.
First, we deal with the notion of matrix factorization.

Definition 4.28 (Powers of a Diagonal Matrix) Diagonal matrices act
much more like scalars than most matrices do. For example, we can define fractional
powers of diagonal matrices, as well as positive powers. Specifically, if diagonal
matrix D has diagonal elements di, the matrix Dx has elements dx

i . If x is negative,
it is assumed D is positive definite. With this definition, the powers of D behave
essentially like scalars. For example, D1/2D1/2 = D.

Example 4.28 (Powers of a Diagonal Matrix) Suppose we have

D =

[
4 0
0 9

]

Then

D1/2 =

[
2 0
0 3

]
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Example 4.29 (Matrix Factorization) Suppose you have a variance-covariance
matrix Σ for some statistical population. Assuming Σ is positive semidefinite,
then (from Result 4.14), it can be written in the form Σ = VDV′ = FF′, where
F = VD1/2. F is called a “Gram-factor of Σ.”

Comment. Gram-factors are not, in general, uniquely defined. For exam-
ple, suppose Σ = FF′. Then consider any orthogonal matrix T, such that
TT′ = T′T = I. There are infinitely many orthogonal matrices of order 2×2
and higher. Then for any such matrix T, we have Σ = FTT′F′ = F∗F∗′,
where F∗ = FT.

Gram-factors have some significant applications. For example, in the field
of random number generation, it is relatively easy to generate pseudo-random
numbers that mimic p variables that are independent with zero mean and unit
variance. But suppose we wish to mimic p variables that are not independent,
but have variance-covariance matrix Σ? The following example describes one
method for doing this.

Result 4.15 (Simulating Nonindependent Random Numbers) Given
p×1 random vector x having variance-covariance matrix I. Let F be a Gram-
factor of Σ = FF′. Then y = Fx will have variance-covariance matrix Σ.

In certain intermediate and advanced derivations in matrix algebra, refer-
ence is made to “symmetric powers” of a symmetric matrix A, in particular
the “symmetric square root” of A, a symmetric matrix which, when multiplied
by itself, yields A.

Example 4.30 (Symmetric Powers of a Symmetric Matrix) When inves-
tigating properties of eigenvalues and eigenvectors, we pointed out that, for distinct
eigenvalues of a symmetric matrix A , the associated eigenvectors are orthogonal.
Since the eigenvectors are normalized to have a sum of squares equal to 1, it follows
that if we place the eigenvectors in a matrix V, this matrix will be orthogonal, i.e.
VV′ = V′V = I. This fact allows us to create “symmetric powers” of a symmetric
matrix very efficiently if we know the eigenvectors. For example, suppose you wish
to create a symmetric matrix A1/2 such that A1/2A1/2 = A. Let diagonal matrix
D contain the eigenvalues of A in proper order. Then A = VDV′, and it is easy
to verify that A1/2 = VD1/2V′ has the required properties. To prove that A1/2 is
symmetric, we need simply show that it is equal to its transpose, which is trivial (so
long as you recall that any diagonal matrix is symmetric, and that the transpose
of a product of several matrices is the product of the transposes in reverse order).
That A1/2A1/2 = A follows immediately by substitution, i.e.,

A1/2A1/2 = VD1/2V′VD1/2V′

= VD1/2 [
V′V

]
D1/2V′

= VD1/2 [I]D1/2V′

= VD1/2D1/2V′

= VDV′






