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*VECTOR GEOMETRY

The star means that strictly speaking, instructors may skip this chapter and
later starred sections that are also geometrically oriented. However, many
students find a picture worth a thousand words. So those who find that
geometry makes a difficult subject easier to follow, are encouraged to study
this starred material.

14-1 THE GEOMETRIC INTERPRETATION OF VECTORS

(a) Introduction

Assuming the reader is familiar with vector algebra, we develop its corre-
sponding geometric interpretation in this chapter; this is then used to rein-
terpret regression and correlation theory. Readers with matrix algebra will
have simultaneously taken varying amounts of geometry; hence, some may
be able to pick up this argument at a midway point. But for the sake of those
who have very little background, this geometry is developed from first prin-
ciples. For simplicity, we begin by showing vectors in only two or three
dimensions. However, interpretations in any number of dimensions are
equally valid; thus, we can drop explicit reference to the dimension of the
space later on.
Consider the vector

X = (X1, Xz, .eny Xp) (14-1)

For example,
x=(2473) (14-2)

which may be plotted as a point in three dimensions (Figure 14-1)-
Sometimes it is more convenient to represent it as an arrow from the origin
to the point. If a vector is designated as an arrow, it may be shifted, provided
its length and direction are maintained—that is, it may be shifted in @
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@) x =(2,4,3)
E x=(2,4,3)
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IGURE 14-1 A three-dimensional vector. This vector is the direction and distance
fined by moving two units in the first direction, four units in the second direction,
d three units in the third direction.

arallel way. But if a vector is designated as a point only, then of course this
oint may not be shifted.

~ The simple algebraic manipulations of vectors are set out in Table 14-1,
ong with the corresponding geometric interpretation. In addition, each
eometric operation is detailed in Figures 14-2 to 14-4.

In review, in Figure 14-5 we see that the sum (x + y) is one diagonal of
e parallelogram formed from x and y, while the difference (x — y) is the
ther diagonal.

@

2x=(6,2)

x=(3,1)

=(=3,-1)

FIGURE 14-2 Scalar multiplication
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¥ =(1,2) is shifted in
order to be added to x

(a)

FIGURE 14- iti ich i i
4-3 Vector addition, which in (b) is seen to be equivalent to constructing '

a diagonal of the parallelogram defined by x and y.

a2
A
y/
| /
/ x (3,1
/
Z | | | |
Rk
¥ -y
e 2,-1)
-1, -2)
(a)
X i
y » » Fop
% X
o ‘ ! l 1 | !
b) :

(e)

FIGURE 14- i
14-4 Vector subtraction (x —¥), which in (b) is seen to be equivalent 10

moving from point y to i
; 3 point x. (¢) The reader i is simi
obtained by moving from point X to point y. e sshaind B 2 g A
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RE 14-5 Vector addition and subtraction compared. Addition is the diagonal
ned by shifting the arrow y to follow the arrow X subtraction is the diagonal
ned by moving from the point y 10 the point x.

E 14-1 Comparison of the Algebra and Geometry of Vectors

Changes length
(Figure 14-2)

23, 1)=(6.2)

Changes direction
(Figure 14-2)

| B+ (L2)=( 3) | Shifts the arrow y to follow
the arrow x (Figure 14-3);
this is seen to yield the
diagonal of the parallelo-
gram constructed from

x and y

Is equivalent to summing X +
(—y). that is, shifting the
arrow (—y) to follow the
arrow x in Figure 14-4a. This
is also seen to be the arrow
obtained in Figure 14-4b by
moving from the point y to
the point X

G.H-(12)
- -1)
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(b) Dot Product

(i) Definition and Properties. The dot product (also called inner
product or scalar product) of two vectors is defined as a simple kind of
matrix multiplication:

x‘)’=m Yi| =Xy + X33+ + X, ), (14-3)
Y2
Vn

For example,
(3, 1, —1) . (2’ _3, 0): 3

The dot product, of course, obeys all the rules of matrix multiplication;
for example,

X' (y+z)=x-y+x-z (distributive law) (14-4)
X (cy)=(cx)-y=c(x"y) (14-5)
But, it also satisfies in addition:

X y=y-x (commutative law) (14-6)

(ii) Length. A special case is the dot product of a vector with itself:
X x=x}4x% 4 +x3 (14-7)

This is called || In two dimensions we recognize it as the squared length
of the vector, according to the theorem of Pythagoras in Figure 14-6a. For
example, the vector x = (3, 1) has squared length

x-x=3%+1?=10

Thus, its length is . /10 = 3.16.

It is easy to also confirm in three dimensions that ||x||? is the squared
length of the vector. For example, in Figure 14-6b, first apply the Pythago-
rean theorem to the horizontal AABC, obtaining x} + x% as the squared
length of AC. Then apply the Pythagorean theorem again to the vertical
AACD, confirming that the squared length of the vector AD is

O+ x3) + x3 = [[x[? (14-8)
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GURE 14-6 Squared lengths of vectors, related by the theorem of Pythagoras.

us, its length is /29 = 5.39.

-In two dimensions. (4) In three dimensions.

an example, the squared length of the vector x = (2, 4, 3) is

x> =x-x=2*+4%+32=29

(14-9)

- [x] has turned out to be length wherever it is physically meaningful (in

2, or 3 dimensions). We will use a little mathematical imagination and call

To review:

2 =x-x
=xi+x3

[Ix]| = length

|| the length (or norm) in any number of dimensions.

+ x2 = squared length

(14-10)
(14-11)
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One of t y
he most frequentl used facts about ]ength iS that lf c is positi\
] 4

lex = x|
This i i i e N
dimerllss:;t;\:?u\; }f]reonm F_1gure 14}-2, and may be proved more rigorously i ) £
g n g ¢ is negative, c?quation (14-12a) cannot be correyt ey
ght side is negative while the left side is positive. By takirfg :)}f
. e

absolute value (magnitud :
(14-12a); gnitude) of ¢, we may write a generally correct form of

lex]| = |e] |Ix| (14120

(a)

(iii) P i i
Ty se:;psci;;ldlcularlty. Also called orthogonality, and symbolized b
y expressed in terms of vector length. From Figure 14-7, i .
! Jtis

- evident that x L yiff
s, i y iff the length of (x + y) equals the length of (x — y), that

RE 14-7 x Ly iff[x +y]=lx-vl- (Note that the diagrams are valid in any
of dimensions.) (&) x Ly. (b) xnot di

ted as an arrow Or a point, but the picture is less cluttered if we

Ix +y]? = jx - y|?
‘use a point. In summary we write

x+y) x+y)=x-y) (x-y)
(14-14)

X-X+2X-y+y-y=x-x_2x.y+y.y ; Xy —m << ®
4x-y=0 Figure 14-9, we increase dimension by one. 1n this figure, we use for
X y=0 rst time two conventions about arrowheads. First, arrows within the
have a light arrowhead, and arrows outside the plane have a dark
i gl g o ead. Second, arrowheads are shown as cones so that when the arrow
b (14-13) ting away from the reader, the circular base of the cone can be seen.
gh mathematically speaking,

That is, tw : g we represent the plane as 2 slab, althou
0 vectors are perpendicular if and only if their dot product is zero 3 p'

-

Lo 1

(c) Subspaces

(i) Ge i

s v:;:t::o'i‘s cr:f ls.ut.u;paces. In Figure 14-8, we show that when

s runnjln thu tiplied by every possible scalar c,, a straight line is

o g through x, and the origin. Each vector c,x, may be
1

! Proof of (14- i
of (14-12a). Since cx = (cx,, ¢x,, ...), from definition (14-11),

flex]? = (ex)? + (ex, P + -+
= cl(x} e x; 3§ ) = czlixuz
rated by x,. (The diagram may pe pictured in gither two

_:BE 14-8 The line L gene
takes on all values, sO that the line extends

Thus
dimensions.) L is ¢1¥i where ¢,

fex]f = elix}f
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s set of all possible linear combinations of these m fixed vectors is called
m-dimension subspace. If m = 1, then the subspace is a straight line. If
_ 2, then the subspace is a plane. If m > 2, the subspace is called a hyper-
pe. Only if m = n, and we thus have n linearly independent vectors (x,,
-+ x,) will we generate all of our n-space. For any vector or point y in this
sace, a unique set of coefficients ¢,, ¢; -+ ¢, can be found such that

24x;+(-1.5)x,

y=C1x1 +CZXZ+“'+CHX" (14—18)

values (¢, C3, ..., C,» are called the coordinates of y with respect to the
85 (X1, X2, -+ > Xn):

'or example, in two-space, the vectors X, = (1, —1)and x, = (2, 1) will
erate the whole space. We now use (14-18) to find the coordinates (with
to this basis X, X,) of a given vector,say y = (4, —1); this involves
g ¢, and ¢, so that

FIGURE 14-9 The plane P generated by x; and x,. P is cyX; + c;X,, Where ¢
take on all values, so that the plane extends to infinity. "3

i 3 C1Xy + C X =Y (14-19)

it has no .thlckr'wss. These conventions make it much easier to visualize

geometry in n-dimensional space (n-space).

In Figure 14-9, we show the set of point l

Pibumit points generated by two fixed vectors ¢ +c, i = ‘: (14-20)
P C1Xq + CX, —00 <€y, € < W (14-15)

This is callc?d the set of all possible linear combinations of x, and x, , and is the 2c;, =4

plane runmng.through X1, X, , and the origin.? Geometrically, we see that we s

can generate (i.e., get to) any point on this plane P by taking the appropriate i . fecits

!inear combination of x, and x,, that is, by appropriately selecting ¢, and ¢;
in (14-15); but we cannot generate any point above or below this plane.
To generate the whole 3-space requires a third independent vector, such

as X3, to take us off the plane P. Thus, the whole set of points in this 3-spa
could be generated by

he algebraic solution to this set of equationsis ¢; = 2,c; = 1. We have
ed y as a linear combination of x, and x, , with the coefficients (2, 1)
the coordinates of y with respect to x; and X, .

Chis is seen geometrically in Figure 14-10: The line (subspace) L, gen-
y X, is shown, along with the subspace L, generated by x, . Then we
¢ the parallelogram, confirming that ¢, must be 2, and ¢, must be 1.
other words, to find the coordinates of y, we project; to find ¢, we
dject y onto L, in the direction parallel to L,; or, stated briefly, we project
mto x, along (parallel to) x, . Similarly, to find ¢, we project y onto x,
x1w

e simplest kind of projection occurs when x; L x,; this is called an
al projection, as in Figure 14-11.

Ci1X; + C3X; +C3%X3  —00 <€ < ® (14-1

This is often stated as: X, X,, and x; generate (or span) this 3-space. Or: X
X,, and x; are a basis of this 3-space.

This generalizes into n-space; consider the set of points

,
j‘

C1Xy + €3 Xy + ** + Cy X —0 <€ <00 (14-1

2 ok : : :

: Unless x, x,. and the origin all lie on a straight line, in which case we can generate onlyt
line. Or worse yet, if x,, X,, and the origin all coincide (i.e., x; = x, = 0) then we can gen!
only one point—the origin. These degenerate cases are called “ linear dependence of x and X;

Har i ; convenience, we sometimes write our vectors as columns instead of rows. More formally,
or simplicity, we will assume throughout this chapter that linear dependence does not @

n easily justify (14-20) by transposing (14-19).
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FIGURE 14-10 Finding the coordinates of ¥ (with respect to X1, X3

by projection. ) geometrically

(d) Perpendicular Projections and Least Distance

Perpendicular projections are i

en . particularly easy to calculate, because th
con_ciltlpn for perpendicularity (14-13) is so simple. To work out Y1, the _f
projection of y onto x,, consider Figure 14-12, which is valid in any dimen-

sion. Of course, since the projecti : ey
i 8 jection vector y, lies
multiple of x,; that is, s on Ly, itis just a (scalar)

Y1 =cx, (14-21)

with the problem being to determine c. Moreover, we note (Figure 14-5) that
Y=y, is the vector defined by moving from y, to y. But we must keep this
perpendicular to x,, that is, we must find ¢, so that

-y Lx, (14-22)
Substitute (14-21) into (14-22) and use (14-13):
- cXy) X, =0
(v- Xy) = e(xy  x;)=0

¥, =the 1 projection of y onto x,

FIGURE 14-11 The orthogonal projection of y onto X;.
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B 14-24
Y1 (xl'x,)xl ( )

e y, is the L projection of y onto x;.
~ The length of this projected vector has a simple formula too:

HY1 uz =0y
= szl * x1
> 2
i 1_’1] £
xl » xl
s 14-25
lu)’x” T X ( )

e, the norm or length of y, is

Iys] = '—’"——”—‘ (14-26)

Referring again to Figure 14-12, we see that the perpendicular projection

 the point on L, closest to y; any nonperpendicular projection, say y¥, is
her from y. The proof is simple: The distance |y — y} | must be greater
the distance |y —y, |, because the hypotenuse of a right-angled
gle is greater than either side.

This theorem is important enough for regression and correlation theory

at it is shown in the three-dimensional case in Figure 14-13.

The perpendicular projection of y onto the subspace
C1Xy +C2X2+"'+mem (14—27)

is the one point on this subspace closest to y.
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Subspace P:
c1X1 + c9Xg

FIGURE 14-13 Orthogonal projection in three dimensions: y projected onto (x,, x,)

subspace.

(e) Cos 0

We can now obtain a simple formula for the cosine of the angle between any
two vectors x, and y. Referring to Figure 14-14, we first L project y onto x,;

then, by definition from trigonometry,

SRR T

= sl

Moreover, from Figure 14-14, it is clear that the sign of cos 6 agrees with the
sign of the coefficient ¢ in (14-21). Using this equation, we may rewrite

Wil o -

e

E 14-14 Cos 0. (a) # acute, cos § > 0, y; = cXy, where ¢ > 0. (b) 6 obtuse,
<0; Y1 =cxy, where c<0. (c) 8 is 90° (y L x,), cos 0=0; y, = cx,, where

(14-28)
ROBLEMS

(14-28) as Let x = (1, —2) and y = (3, 1). Graph as arrows x and y and the
following:
e C“xﬁ ” (14-29) @) 2x
ituti y b) X+,
Substituting (14-23) i
RSN LY (d) (x+y)+ (x —y). Check that this equals 2x.
=77 14-30 _
o o [ lyl ( ) () (x+y)— (x —y) Check that this equals 2y.
f) —3x+2y.
cos =Y 2L (14-31) (), e SR
x|l fyl Which of the following pairs are orthogonal:

To free our notation somewhat, we rename x, by x:

o8 b=

.
] Yy

where 0 is the angle between x and y.

(a) (1,3)and (-6, 2)

(b) (1, —2)and (1, 2).

(c) (1,2, —2)and (2,3, 2).

(d) (1,-2,1,0,1)and (2,0, 1, —1, —1); call these x, and X,.

Find ¢ so that (x, — ¢x,) will be perpendicular to x, in Problem
14-2(d) above.
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14-4

14-5

14-6

14-7

VECTOR '
GEOMETRY 14.2 LEAST SQUARES FIT 391

Using the basis x, = (1, —1 ; :
dinates of each of ;he igol’lowix)l’gx rz)oing"}‘z;efiln 3e?ilfg By 8
trically (work approximately). y your result geome.

(@) (=1, -2).
(b) (0,3).

(€ (=11)
@) G, 1)

X, X2 -4
1

X,

(a) b

Find the coordinates of the point (1.2, .3) with respect to
find the L projection

Work geometrically in two-space. In each case,
and y,. Under what

of y onto Xy, and y onto Xx,. Call them y,

(a) the basis x; = (.5, .1), x, = (.1, .2)
circumstances does y =¥ + y2?

(b) the orthogonal basis x; = (—.4
e D) %= (12
(c) the orthonor.mal basis x; = (—.6,) ~.28), :((z = z—-.8 6), wher
each vector is normalized, that is, of length 1. Wh’ich i)asis i:

easiest? LEAST SQUARES FIT

th this geometry in hand, we now turn to its application to regression.
consider the problem of fitting a line, as in Chapter 2. To keep the
etry simple, our example in Figure 14-15 consists of only three ob-
d points. The values of x are centered at 0; this can always be achieved
ing deviations from the mean (y may or may not be also translated to a
‘mean). The mathematical model may be written as

y=XB+e (14-33)

Cot;sider t-he basis x; = (1, 0, 2) and x, = (2, — 1, 1), which generates
ztah plane P in Fhree-space. For each point below, find whether it lies on
e plane; if it does, then find its coordinates with respect to (x;, x,):

(a) (5, —1,7)

(b) (4,0, 1)

() (3, —2,0).

Consider vectors x,, X, in the two-space: ¢;x; + ¢, X;:

§5=~3+.8x

¥y
L ]

Y2

(a) Match the point with the correct pair of coordinates with respect
to (x,, X,). Work geometrically, and roughly.

Y1 <1* 0>
Ya G
Ys <1‘}, e 1> x

(b) The three points are close together. Are their coordinates close?

Give an intuitive reason why. . FIGURE 14-15% Regression scatter: points are observations; axes are variables.



392 VECTOR GEOMETRY

The sample values used for estimating P are displayed in the form:

y = X + B (14-34)
0|=1{1 —4| [Bi|+]¢
3 1 1 B e,
6 § 3 2,
or
y=§ +é (14-35)
observed y = fitted y + residual
where the fitted vector is
= B Xy +Bz X2
¥= Bi|1|+B|-4
1 1
1 3 (14-36)

Figure 14-16 displays exactly this same information i i
vector ge.ome.try. Whereas in Figure 14-15 each obseruat.it;ﬁnwzllrs1 pz;:)tftl:ia:: :
point in “variable ” space (i.e., the space defined by variables on the axes), in
Flg.ure’ ’14-16 each variable is now plotted as a point or arrow in an “ obser-
vation ” space. Whereas each point in Figure 14-15 was drawn from a row of
(14-34) [e.g., the first point (—4, 0) was drawn from the first row], each point
or vector in Figure 14-16 is a column of (14-34). :
fouoxg g::az);:mple we also note that x, and x, are perpendicular. This

XX = (1L, 1) %02, x3) (14-37)
(14-38)

(14-39)

= Xy X

= nx
Recall that x was translated so that X = 0: therefore
(14-40)

This establishes that x; L x,. This was the motive for translating x onto &
Zero mean.

: Algebra%ical_]y in (14-36) our problem is to find a fitted value of y that is@
linear combination of x, and x, . Geometrically, in Figure 14-16, this means
that we must select a fit somewhere on the plane P generated by x’ and X, -
we wish to determine the point or vector on this plane P that bc;t fits, or is
closest to the observed y, we should drop a perpendicular from y onto’ P.Is

xl'X2=_'0

3 ; 14-2 LEAST SQUARES Fil s9s

Observation 3

Residual 8= (y—¥)

Observation 2

vation 1

RE 14-16 Same information as in Figure 14-15; but here points (vectors) are
s, axes are observations.

the least squares solution? The answer is: yes. Recall that least squares
es selecting y; to minimize

Y =3 (14-41)
ector notation, according to (14-11), this is:
ly - 31 (14-42)

it is, least squares involves minimizing the squared distance (i.e., minimiz-
the distance) between y and ¥, which is accomplished by perpendicular

tion according to (14-27).

It is also important to note that the vector of estimated residuals
é=(y-9)

rpendicular (orthogonal) to the (x,, X,) plane; hence ¢ is orthogonal to

of the regressors X; and X, in the plane. This means

UL T e A T

Finally the equivalence of Figures 14-15 and 14-16 may be confirmed by
ng how the estimated residuals (24, 23, &3) = (.2, — 8, .6) appear in each.
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14-3 ORTHOGONAL REGRESSORS : ly, we conclude that

- T ——l’l‘;z."); (14-47)

ting that x, is, in fact, the variable x appearing in Chapter 2

If the regressors are orthogonal, as in Figure 14-16, we can t.hen find si
formulas for p, and B, . Referring to Figure 14-17, for notation, we find
§ is just the sum of §, and ¥, . the individual L projections of y onto x,
X, , respectively. That is, R

Y=¥ k¥

o= (b (e

Comparing (14-44) with (14-36), we conclude that the coefficient

= & X1V (14-48)
L (2-16) confirmed

From (14-24)

ANOVA FOR SIMPLE REGRESSION

pply the Pythagorean theorem to Figure 14-17, it turns out to be the
‘A table in disguise. Specifically, consider AADC, reproduced again in

s * X -
By = o 4-18 (noting that the vector DC = §, = f, X, ). From the theorem of

x4 12
Now recall from (14-37) that x, is just the unit vector. Thus Iy = §.]2= ”Bz a2 + |y — 5> (14-49)
ve recognize that x, here is just the x in Chapter 5, this equation

. — i l = i & = . .
A T S e E— i=zxy o look suspiciously like equation (5-20) expressed in vector notation.

Ix P=1+1+1, and in general = n n easily be verified; since
§.=8 14-50
Thus (14-45) reduces to E . ¥1=Bixy ( )
Pi=Yy : o
l (2-13) confirn 1
=y|1
2|
£
4
y
A

Yo = Boxg

FIGURE 14-17 The projected § is the sum of the individual projections §, and

because x. I x,. Note that §, (or §,) is that part of y explained by X, (or x1)- URE 14-18 Pythagoreantheoremand ANOVA, for the little triangle of Figure 14-17.
: 4 x50 Mo
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Thus 3 5
- Solid sphere of possible observed y's
A e : 2t
y-%)=|r—¥ (14-51) Disk of fitted §'s
W=l sterval of possible B1's

Thus ﬁttillg y on the duﬂl"ly IEgI'eSSOX x] iS us € y =
5 J t xpl %Slng m terms of
de 1ations f m 1tS mean The variOuS Compone [6) ) are t]le :

[y — ¥, [|> = total variation
Simil .‘ ] (14'52) FIGURE 14-19 The distributions of y, § and B, (assuming x; L X;).
imilarly we can express the right side of (14-49):
1B2 %2 ||* = B3 |Ix. |2

= explained variation, (14-53)

e. This sphere of y observations (vectors, points) is centered at the
E(y), which according to (12-13) or (14-33) lies in the plane P gen-
] by x, and x,. Of course, the statistician doesn’t know where in this
E(y) lies; he can only estimate it by observing a sample vector such as

v vector shown. Note that this observation involves substantial error;
y is quite distant from E(y)

east squares estimation consists of orthogonally projecting this ob-
d vector y onto the plane P, the resulting ¥ becoming the estimate of
To derive B, the estimate of the true population coefficient By, we
y along X, onto* x,; similarly, B, is derived by projecting ¥ along X,
,. We note in this example, that 3, happened to underestimate f8;,
use of the particular error in the observed vector y.

Our more general observations on Figure 14-19 are: E(y) s fixed, while
disk around it, lying in P, represents possible fitted values of §, corre-
ding to the possible observed y’s falling in the sphere. ab is the projec-
of this whole disk along x, onto x,. This is the interval of f8,’s around
ed true f,. This sampling distribution of B, intuitively seems to be
d and normal, since the possible observed y's are normally dis-
ted in the sphere centered on E(y): these properties in fact have already
1 rigorously established in Section 12-4.

and

[y — ¥||? = unexplained (residual) variation
Thus, (14-49) becomes

Total variation = explained variation + unexplained variation
(14-54)

(5-20) proved again

More formally, this can be written:

total variation after y regressed on x,
= variation explained by adding regressor x,
+ variation still left unexplained (14-55)

14-5 THE STATISTICAL MODEL

In apply'mg statistical tests, we use a mathematical model, that is, a set of
assumptions about the parent population of all possible outcomes, not just
the one outcome we happened to observe. Referring to (14-33), we ;mte that
the populatlon consists of all possible observed y vectors, ger;erated by all
possible errors. This is shown schematically in Figure 14-19. If errors are
ﬁumed normal, th'e possible y’s we might observe would be spread out ina

undless cloud, thick around E(y), but thinning out in the distance. But 10
ma.ke'the geometry manageable, it is necessary to draw an ellipsoid that
delimits !nost of the observed y’s, the so-called ellipsoid of concentration.
For the independent errors specified in (12-14), the ellipsoid is simply 2

¢ precise, such a projection gives us, for example, Byx,, rather than the B, shown in
14-19. But to keep things simple, we have cheated a little and assumed X, is of unit
h, 50 that Byx, is a vector of length B,. Thus B, may be easily interpreted as the distance
g x;. The target f§, is similarly interpreted.

‘But suppose X, is not of unit length. (Usually it will not be; indeed in our example, X, is the
regressor of 1's, so that its length is \/71.) Then to be precise we must interpret f§, and f1,
coordinates of E(y) on the plane P [ie., the solution to E(y) = Bx, + B2x,). Thus B.is
by projecting E(y) along x, onto x,, and seeing how many times longer than x, this is.
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14-6 MULTICOLLINEARITY

Thus far we have only considered two regressors, x; and x,, with x, be;
the unit variable used to estimate the regression intercept j,, and x, bej
the only bona fide regressor. So long as x, is measured as deviations from

CORRELATION AND COS ¢

4-51) it was established that

the mean, x, and x, must be orthogonal, and Figure 14-19 applies: The ‘)

projection of y along x, onto x, is just the L projection. Now suppose both, - (y—¥)= (14-56)
X, and x, are bona fide regressors, in which case they need not be orthg-

gonal. Figure 14-20a shows what happens when they are not; the skeweg

projection of the disk of possible §’s along x, onto X, spreads out the = deviations of y (14-57)

interval of B,’s.

As the vectors x; and x, become more nearly collinear, the problem
gets worse, as in Figure 14-20b; here the interval of f,’sis dispersed on both
sides of the origin. The point estimate 3, may be positive—but there is nowa
good chance it may be negative. Moreover, although we see from Figure
14-20b that the true g, is not zero, this is very difficult to establish statist-
ically; usually Hy(B, = 0) will not be rejected because of the huge standard
deviation of f;.

Although multicollinearity causes a huge spread in f,, the other attrac-
tive properties of f, (normality, unbiasedness) are not affected.

roughout the rest of the chapter, we will be interested only in this
on form for every vector. Also note that since y as well as x is ex-
in deviation form, according to (2-20) the intercept now disappears,
vith the unit regressor used to estimate it. In other words, all X’s now
bona fide regressors.

“we consider two such deviation vectors, x and y, it would be inter-
to measure how closely they correspond. The standard geometric
of the closeness of the direction of two vectors is

PR ISl (14-58)
I Iyl (14-32) repeated

g the dot product explicitly in terms of components,

_—Disk of fitted §'s

PSR L (14-59)

X1

(a)

Deviation

(6)

(a)

FIGURE 14-20 The plane P from Figure 14-19 is laid flat on the paper, and vnewds(
from above. (a) The distributions of § and §, when x, and x, are not L. (4) When X0

14-21 (a) Relation of a vector y to its derivation form. (b) Correlation = cos 0.
and x, are nearly collinear.

iere x and y are in deviation form.
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Since the x; and y; values are deviations, we recognize this as the correlag

ABLE 14-2 Comparison of the Geometrical interpretation of
coefficient of (5-6). Thus,

Cos 0 and the Statistical \nterpretation of Correla-

m. ‘ . .
: All variables are in deviation form)

tion r (

r=cos 0 (14.“))‘

where 0 is the angle between the deviation vectors x and y. In other worqs
the geometric interpretation of correlation is the closeness of the angle g
This is shown in Figure 14-21.

Thus, for every geometrical statement about cos 0, there is an equiya.
lent statistical statement about r. A few such examples are given in Tabje
14-2. Similarly, the equivalence of the geometry and statistics of regression is
given in Table 14-3.

r=+1
iff x and y move together
perfectly

cos0=+1
iff x and y agree perfectly
in direction.

¥ =
iff x and y move toget'her perfectly,
but in opposite directions.

cosf=—1
iff x and y are in perfectly
opposite directions

14-8 CORRELATIONS—SIMPLE, MULTIPLE, AND

PARTIAL .

iff x and y have no linear relation;

With all vectors hereafter expressed in deviation form, we see in Figure 14-22 ki gk e

that the correlation ryy, is just cos 0,. To distinguish it from the multiple
and partial correlations, ryy, is sometimes called the simple correlation.

The multiple correlation coefficient R is defined as the simple correla-
tion between y and y—that is, cos A in Figure 14-22. This provides an index
of how well y can be explained by both regressors® x, and x,.

The partial correlation of y and x,, designated ryy,x,, is the simple
correlation of y and x, after the influence of x, has been removed from each.
The influence of x, on y is the fitted value (¥,) when y is regressed on x;.
When this influence is removed, or subtracted from y, the result is the
residual vector (y — §,). Similarly, x, is regressed on x, (at 4), and when this
influence is removed from x,, the result is the vector AB; this is shifted to
CD, forming the angle ¢,. Then cos ¢, is the partial correlation ryy,x,-
Similarly, we could show that cos ¢, is ryy,x, -

In Table 14-4, we extend Table 14-2 to a comparison of the geometry
and statistics of multiple and partial correlation.

isti ion and
E 14-3 Comparison of the Geometry and Statistics of Regression

ANOVA (All variables are in deviation form).

Variation of ¥
Standard deviation of y (except for

the divisor /N — 1)

gth of y

* Specifically,

t squares fit, yielding
deviations.

Statistical leas

g minimum sum of squared

[yl

Bearing in mind that y, like all other variables, is defined as deviations from the mean, ||y|* is i
total variation, and we may write

ojection, yielding y — y of
mum length

R=ryp=cosi=

pr

ANOVA: . i
Total variation = explained variation

+ unexplained variation

i e heorem:
: Eafgf’s\r*flfﬁfii I+ Iy - 90

pose MI; B variation explained 'by' all regressors ke 530
¥l total variation
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TESTS WHEN THERE ARE k REGRESSORS

j NOVA for Last g Regressors

a little imagination, in Figure 14-22 we can think of replacing x; with
regressors Xy, X ** Xk-g- and x, with the remaining set of g
IS Xp—g+1 " Xk We now wish to simultaneously test this latter set
ressors. The only change this causes in the theory of the previous
that the lines generated by X, and x, are replaced by subspaces.
ubspaces are impossible to draw, so they are still represented in
4-23 by lines. How can we test the null hypothesis that the last g

A N e
FIGURE 14-22 Multi i
ple correlation coefficient (R = )
correlation ici 0 : =cos 4) compared with sj
coefficient (ryyx, = cos 0,) and partial correlation coefficient (ry with Sll‘:p]e
XaiX; = €OS ¢,)

TABLE 14-4 Compar'!son of.the Geometry and Statistics of
g:trrelqnons——&mple, Partial, and Multiple (An

ens
14_22_I)0n of Table 14-2, Also refer to Figure

—i>
Subspace generated by X, . . - Xkg D

14-23 Multiple regression with k regressors, with the last g being tested.

cos 6, Simple correlation ryy . ‘ 3 :
;. are all irrelevant, that is, the last g regression coefficients are zero?
cos ¢ Partial correlation ryy,x, hod is to apply the Pythagorean theorem to the triangle ADC to
o : the ANOVA identity
Multiple correlation R
2
e e 4D = cDI? + [4C]
;ff y ?nd ¥ coincide; iff x; and x, explain y : . e :
y lies in the (x,, x,) subspace. | exactly, leaving no residual unexplalpec} variation after y is regressed on Xy ... Xk-g
: ; — variation explained by introducing g more regressors
o cos =0 R=0 + unexplained variation that still remains (14-61)
iff y orthogonal to the iff § = 0x, +0x, =0
(x1. X2) subspace. ie., x; and x, do not explain he two variations on the right side of (14-61) are _statistically indepen-
yatall variables, with gand (n — 1 — k) df. respectively.® When we divide by
|cos 8, < A
2] Icos A ryx, <R oof. see for example, H. Scheffe, 1959. Of course, we are assuming that the true
|cos @] < |cos 4 nts of the last g regressors are all zero, since this is the null hypothesis being tested.
At | ryxyx, <R ‘Our convention in this chapter is to let k represent the number Of regressors excluding
ant regressor of 1's. This disagrees with Chapter 12 (where k included the constant
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PRUBLEMS aus
these d.f., the iati . ; ) i
variations become variances, and their ratio is his we simply express F in (14-63) in terms of r, rather than squared
i - = hs follows. From (14-63), or Figure 14-24, we may write
additional variance explained by intro- hs, as 10 ( ) g : y
F— ducing the g regressors - Fe 2\\CD\\ (14-64)
residual variance (146 JAC)?/(n — k — 1)
F |cDy?

which follows the F distribution and ca
n be used to test the statistical sign;
cance of the last g regressors [(14-62) confirms (5-57) noting,1 t;:::l frtgltnhat

earlier chapter, th s
than g pter, the number of regressors being tested was called r, rather

i—k~1 jacy

i g the numerator and denominator on the RHS by | AD||* and noting
(cos ) = |CD]*/|4D]

When there is j
A obtaine;re is just one regressor to be tested, we set g = 1 in (14-62), F nCD"z /| AD|? = 2 i 1465)
—%—1_ |Ac|/|aD|? ~ 4D’ - el 1-r
P additional variance explained by the last regressor x : \\AD\\2
unexplained variance £ (14-63)
F= r_z_(f'_:f:_l—) (14-66)

A T
i i e ed, the closer is ¢, the greaterisr, and the greater is F. Thus (14-66)
63) are seen to be alternative ways of testing the null hypothesis that
related to the last regressor X;. '

inally, if we take the square root of (14-66), according to (13-44) we

v
is is the same f that appeared in our tests in Chapters 2 and 3. Note
67) nicely shows the relation of t, F, and the partial correlation r.

:\ellftltnatively we could test t‘he last regressor by examining the partial cor:

- ulrc;nlzy 52 X, xﬁ, .. Xs_,» Which we_shall abbreviate to r in this discussion In

: 452) In;tc;l (:vofezs i o li thc.: p(alrtxal correlation r is cos ¢ (just as in Fiéure :
+-22). : ing [as in (14-63)] whether the squared length g

:15?521614;24 is lgrge enough (relative to AC) to reject Hy, whygrtloto :kaDtl;I;
q nt question: Is angle ¢ close enough, that is, is r large enough? To

Unexplained variation )BLEMS

c (2 3
remaining after y regressed : T 3

it isdeial St True or false? If false, correct it:

(a) In studying the relation of three variables, if x and y are each
uncorrelated with z, then rxyjz = T'xy» that is, the partial and
simple correlations coincide.

(b) If the multiple correlation of y with Xy == X is zero, then the
partial correlation of y with x; is also zero, as is the simple
correlation of y with x;.

(c) The partial correlation of y and X, is the simple correlation ofy
and ¥ after the influence of x, has been removed from each.

S T
& (2) / (n—k—1)

Variation explained
by adding last regressor X _J
(1)

FIGURE 14-24 AN i in tri
T OVA. showing the vectors in triangle ADC in Figure 14-23 when
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14-11

14-12

Suppose two economists, usin
‘ b g the same sample of 24 ob i
made the following two different analyses of l:he model: s

¢

VECTOR GEOMETRY

Suppose 50 observations were used to regress y on 3 regresso
sl _an_d X3. ;f t.he partial correlation of y and x5 was 28 igs o
statistically significant (discernible) at the 5%, level (2-sided3" ;

Refer to Flgurg 14-23, with g = 1. Suppose that instead of obs

X, , an economist observed a variable z, that was more closelerv

related to th.e previous variables x, - x,_,, yet still generatgdcor
same regression subspace P. Suppose further that there is no d - =
that the previous variables x, *** x;_, belong in the mod IOUbt 7
only question is whether the last variable (x, or z,) belon =
True or false? If false, correct it, giving a brief reakson g

(a) The multiple correlation of y wi
' y with x, - X, _4,
the multiple correlation of y with xll- 2 x:_ ,‘ xz:, ik

(] 1 OIT elatlon ()1 Wlth W()uld Ual the ar
tlal

Referring to Figure 14-22, su !
, suppose the regressors
more correlated, so that the picture was lilfc this: ik

y = Bo + B1Xx; + B2 X, + error (14-68)

The first economist makes a t

est of the null hypothesis f, = 0.
She ca}culates the t value, which turns out to be offy 1.1
(reflecting a small partial correlation, i.e., a wide angle ¢,). At

the 59 level, the null h is 1 j
A g ypothesis is not reject
recommends using the model vz

y = Bo + B1X, + error
The estimated coefficients turn out to be

(14-69)

y = 1.70 + 1.3x, + residual
coefficient 1.3 being

( 14-70)
with
the significant

3 s
(discernible). statistically

14-10 FORWARD STEPWISE REGRESSION 407

~ 2. In the model (14-68) the second economist makes a test of the

null hypothesis f, = 0. In this case, the t value turns out to be
only 1.4 (reflecting a small partial correlation, ie., a wide angle
¢,). At the 5% level, the null hypothesis is not rejected, and so he
recommends the model

y = Bo + B2 X, + error (14-71)
The estimated coefficients turn out to be
y = 1.70 + 4.7x, + error (14-72)

with the coefficient 4.7 being statistically significant.

(a) Isit possible that the two economists could validly arrive at
such different conclusions as (14-70) and (14-72), or can the
discrepancy be explained away as a computational error?

(b) Which economist has the better model? Or is there an even
better model than these two? If you cannot answer this
categorically, list the possible criteria for choosing between
models. Y

FORWARD STEPWISE REGRESSION’

s section we will discuss in more detail the stepwise procedure in-
d in Section 5-3. Consider a forward stepwise regression® of y on X,
where we start from scratch, adding one regressor ata time; initially
that we have specified a priori that x, will be tested first, and x,

ore examining this procedure, in Figure 14-25 we show the result of
g the standard multiple regression of y on X, and X, . (Although our
are illustrated for two regressors, they are easily generalized to k

ors.) Although the true coefficients B, and B, are not shown, they
be kept in mind as the targets; we suppose that B, and B, are both

ro, so that y depends on both x, and x, . The near collipearityAbetween
X, results in large standard errors for the estimators B, and B;;butat

B, and B, are unbiased, and the residual y — ¥ is minimized.

s section is starred because of its difficulty. Also, it includes a fallacy that fortunately
rs in the literature less often today than in the past.

ice, the forward procedure is typically used by computer programs in the interest of

since alternative stepwise procedures involve fitting regressions of larger dimension. For
detail on alternatives, see Draper and Smith, 1966.

j
b
.
&
&
8
-8

et =
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this test leads to the decision to include

efficients by 2 full multiple regression of
ultiple regression

& vector § — ¥y, nOt X2 B
we obtain the correct ff cO
and x, . (In larger models, after each such test,a m

all the x’s that have so far been included.)
ary, we consider several major problems involved in stepwise

n when regressors are not orthogonal. Even if the correct procedure
., even if the relationship between y and X is tested by examining

not cos §%) there are two problems:

should be included, Brisa biased r

he initial step of testing whether X4
mate.

in the initial step We have tested Xy and decided to include it;**

we test the significance of x, by examining cOS $, in Figure 14-25.
ugh the multiple correlation of y on Xy and x, is high, the partial
elation (cos ¢,) may be statistically insignificant because of multi-
. Then the final regression fit would include only Xi- On the
hand, consider what would happen if we took up the regressors in
other order. In the first step We would include? X23 i i
significance of x,, we might find the partial correlation (cos 1)
istically insignificant. In this case, the final regression equation
d include only Xz - Thus, the variables appearing in our final model
depend on the order in which they ar¢ brought into consideration.
this reason, in the absence of prior grounds 10 justify @ prcscribed
ering of the variables, a computer program should be selected that
automatically pick up first the regressor th
ed with ¥.

2 f\‘
Ji= ﬂlxl

FIGURE 14-
4-25 Problems in stepwise regression

In stepwise re :
the fit §, = ﬁ’f’ﬁ .glé?:;z;l, the first step is to regress y on :
otthoyoml. it will be s bissed long as the regressors o
. & % L 1 x ” s
14-25T11:els largilr Hian the unbiaset;%at)e It ﬂl. (In the case shown Zina;fi:g?l:
seconda step s t . :
covebil e saas 5 o consider the second re ;
out,” to regres); tigor:stthi‘nam{ al temptation nowgtrliizr ’1:2 , ny e arc
. of y still left . , has been *
on x, . In Figure 14-2 . unexplained, that i netted
: 5 we shift thi 3 , that is, the resid N
the resulting esti 5 we shilt this residual sidualy —y
st : al vecto B s
will be a b%asedme::ierf 3. Again, as long as x, and ’r‘ t(;rt: ¢ origin, and shegy
unbiased f,) Furthemi1 tor of B, (in the case Show; it inot orthogonal, B
boing based on ¢ 2 ore,_a test of significance on A% s smaller than the
i thers cos ¢, which is nearly zero.” B3 would be very weak,
; is even more d :
will not be as . amage: The final resi - 3
We have i‘::\ﬁlirascm t:":dst?\ﬂdard multiple r:gig:;)]ny)l_" pix, - g
difﬁcult in an ORCULY ed that Wl[h m > . .
: ult
hiasad mEthoc)il fl?:f,:-? a.l<:sta_bhsh statistical Signiﬁ:;(::llgen.esr regressors, it i
of regressors th es it even more difficult S E R using @
e that are tested last to establish the significanc®
orrect unbiased t :
atest of r est of the relationship b
»_”(ifi or cos ¢, . But this is the angleI:;etevt"c::f:I:hy and ;(z involves
e residual y — Vi

at is most highly cor-

ct procedure is used (i€ suppose We have al-
ecided to include X1, and in then testing X2 we erroneously examine
rather than COS ¢, 0r equivalently, suppose We erroneously regress

). Then there are two additional problems:

ow suppose an incorre

b
on X,_

of the effect of the second regressor

¢ will be a severely biased estimate
ult to establish its

,, and any test based on it will find it very diffic

atistical significance.

he test will also be we ge residual.

ak because of the excessively 1ar

, only, the test of Xy could be viewed either as examining
where 0, is the angle between ¥ and X, in
statistically significant regressor.
ame reason as our initial

the first step of regressing ¥ on X
lased Bt, or alternatively examining cos 01
14-25. This close angle leads us t0 conclude that X, is 2
that this test of X2 would be statistically significant for the si

of x, in footnote 11 above.

9
Reason. Since
; the residual %t
parallel, y — ¥, wi al y — y, is perpendi
s ¥, will b d pendicular to ‘

10 The standard least ;’ffr’e’s’ perpendicular to x,, that isx'.}fnv:jiusgwc x, and x; are nearly

make y — f,x; — fax; a mi;‘;gl‘esswn coefficients f, and i;z e e nearly 90°.

course, x, and x, are Orthogon:ln{m‘ ":lnd thus smaller than Y Cﬁihosenb:;y definition, 1
, in which case the tw; ; — Bix; — B x,. (Unles

o residuals coincid 2 i
e.)



q pog . mic
o et an economist is examining the effect of socioecono
se

ey . e s ; income (Y). After explaining
In conclusion, if there are clear prior guidelines indicating that 5 g e d (x,)and education (x2) onc‘snthat no further significant

un

specific regressors are appropriate, then they should all be used right aw@ ‘:;g‘:;gressing it on x, only, gehi::lﬁus'\“g x,. He concludes t.hat
a full multiple regression, rather than tested one at a time with any Sort g planation of Y can be estab S‘cbackgro‘md' but not education.
stepwise approach. If there are no such prior guidelines, but the numbey 4 oeconogll‘ has gone wrong? Tilustrate using
regressors must be kept small to provide a more manageable model, then his paper. o nder what special circumstances
stepwise technique may be reasonable. But it must be recognized that ¢ ector geometry; also point out um be justiﬁcd. Are these circum-
procedure tends to discriminate against regressors tested last, even if g his sort of two-step _approach oo

rectly applied; and if incorrectly applied, it discriminates even more, = : ces present in this case?

ou are to discuss

*PROBLEMS PROBLEMS
14-13 As in Figure 14-25 suppose x, and x, are highly collinear. In add
tion, suppose that the true (as opposed to observed)y has a pe
positive correlation with x,, that is, the true model i
y = 0x, + f,x,. Also, suppose that we are lucky enough in our
sample to observe y being perfectly correlated with x, , that is, y

perfectly explained by this single regressor. Hence, the fitted stan-
dard multiple regression of y on x, and x, is

¥

7

, 154
y=0x1 +ﬁ2X1 (14—77’ i /
(a) Show this geometrically.

(b) Is B, unbiased?

(c) What is the vector of residuals?
Now, to show how badly a stepwise analysis can go wrong if
applied carelessly, suppose an erroneous stepwise procedure is
undertaken and in the first step y is regressed on x, as follows:

Y1 = pBix,
(d) Is B* biased? Is it possible for us to conclude that ff is
significantly different from zero?
(e) Suppose after erroneously including x; as a regressor, we fur-
ther err by regressing the residual vector (y — §,) on x,. Is the
resulting estimate of f, biased ? Is it possible that we will there-
fore, reject x, as a regressor (even though x, in fact perfectly |
explains y)? 3
(f) How does the resulting fitted equation compare with (14-77)7
(g) How does the final residual vector resulting from this stepwise
procedure compare with the residual vector in (c)? :
(h) Could this disastrous result have occurred if, in the first step-
we had used a computer routine that introduced the regressor
most highly correlated with y first?

{ the diagram above, and

Make & copy ditional vectors you require).

items (draw in any ad

(i) p,and B,, the coe
on x, and Xz. :
ii e residual vector. =y
((1‘111)) "g‘hhe angles 1 and ¢,, where COS by = Tyx,1x2
e "rlxzixﬁ € COS
i The angle A, where '
' (l(‘\lr)) B. the cgoefﬁcient of simple regressxo:c
s;ime as the multiple re_gresg(??n c
what conditions would f= b1
(vi) @,, where coS 0, = rvxy

fficients of the multiple regr

Ve,

mark the following

ession of ¥

and

oty on s, 15 e
ficient f,? Under
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14-16

14-17
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b ' Lom
(b) Using this diagram, what is the F test for f, = 0? What is th
? eF

test for f, = 0?
An economist fitted the simple regression
y = a + bx + & (residual)

Th y p -
e next da She deCIded that She Should lllclllde aIlOthCI €X ld
na.

tory vari 1 n for th
€ sa e

y=a’+b’x+c’z+é’

The letters a b a, S values, not ”le t
X Uy . CtC., refer to the ﬁtted (OL Tue
l
true? SWEr Vely car efu]ly; 10] example' never, or alwalys
. ’ . Or

usually, except when
RSN ..., or rarely; only when .. .). In each case

(a) b=>b
(b)
()

(d)
(a)

n n

L @)<Y @

i=1 =

b’ is statistically signi i i
s y significant (discernible) at the 59, level, yet bis

b is statistically significant at the 5%, level, yet b’ is not

In a sample of 30 i

’ observations, su .

tion : g HORS, SUppose the mult -

o of y with 5 variables is .72. Including a sixthlple e

Testeajles ltlhe multiple correlation to .75 AN

(2-sided). P =0 (x¢ is irrelevant) at the 5% level

If R = .75 does not achi

. achieve statisti e :

1&/)}’[ ) what value of R woulds? atistical significance (discernabi-
at is the partial correlation of y with x¢?

‘ ;15

“HER REGRESSION TOPICS

SPECIFICATION ERROR

the model is misspecified? For example, 2

‘much do estimates eIt when
cified to be linear; the

onship that is actually nonlinear may be spe
el in Section 2-10. The

em this raises has already been briefly discuss
ification, the kind that

1t section is devoted to another kind of misspect
if too many or 0o few regressors are included in the model (a model

~ Too Many Regressors: A Model that is Too Long

roblem of too many regressors may be formulated as follows: Suppose
regressors really don’t belong in the model (12-9), that is, their

cients should have been set equal to zero, d priori. If we inadvertently
these extraneous regressors in the model, that is, estimate their
cients, will this raise any problems?
n terms of bias, the answer is: no problems. According to (12-31).
sion coefficients are unbiased. So the extraneous regressors will have

ents whose expectation is Zero, while the relevant regressors will have
ents whose expectation is also correct. Thus, n0 bias is introduced by

"o the model too long does increase the variance of the

his is true for the extrancous regressors: Because
e p; are zero, ithwould be better to specify them as zero exactly, rather
use estimates f3; that fluctuate around zero. Moreover, the inclusion of
yarit regressors will also increase the variance for the relevant
sors—to the degree that the extraneous regressors produced multicol-
ity problems [although we do not prove this, we illustrate it geomet-
y in part (c)]-
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