
Homework 4
Psychology 312

1. Multiple Regression. The Model and its Estimates. In standard multiple
regression, we fit the model

y = Xβ + e (1)

where y is an n × 1 vector of independent criterion scores, X an n × p′

matrix of scores on p′ predictor terms, including an intercept term. So in
the typical case where there are p predictors and an intercept, p′ = p+ 1.
The predictor scores in X are considered fixed constants. The errors in e
are independent random variables, with zero means and constant variance
σ2. So we say that

Var(e) = σ2(I) (2)

Note that since both X and β contain only constants, it immediately
follows that

Var(y) = Var(e) = σ2(I) (3)

and
E(y) = Xβ (4)

We’ll assume a parameterization X of full column rank, including a col-
umn of 1s for the intercept if necessary. So (X ′X)−1 exists. The p′ × 1
vector β contains the regression parameters, including the intercept. The
vector e consists of errors.

Note: these errors are unobservable, because β is itself not known. We can
estimate β, and use the estimate to construct estimates of errors. Note
again, these estimates are the model residuals. The residuals are not the
errors — they are estimates of the errors. Although the errors are assumed
to be uncorrelated, the residuals, as we shall see, are not.

The least squares estimates of the regression parameters in β are calcu-
lated as

β̂ = (X ′X)−1X ′y (5)

The predicted scores are

ŷ = Xβ̂ (6)

= X(X ′X)−1X ′y (7)

= Pxy (8)
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The residuals are

ê = y − ŷ
= y −Xβ̂
= y −X(X ′X)−1X ′y

= y − Pxy

= (I − Px)y

= Qxy (9)

(a) (10 points). While the elements of β are constants, the elements of

β̂ are random variables, and have an expected value and a variance.
All regression programs compute and report estimated standard er-
rors for the elements of β̂, i.e., the estimates of regression param-
eters. These are obtained as follows: (a) Compute an estimate of

the variance-covariance matrix of the random vector β̂; (b) Since the
diagonal elements of this estimated variance-covariance matrix are
estimated variances, take the square roots of these diagonal elements
to produce estimated standard errors.

Given the above, and remembering that Px and Qx are matrices of
constants, prove the following two results.

i.
E(β̂) = β (10)

Hint. Combine Equations 4 and 5.

ii.
Σβ̂β̂ = Var(β̂) = σ2(X ′X)−1 (11)

Hint. Use your results from expected value algebra and compute
Var(β̂) as Var(A′y), where A′ = (X ′X)−1X ′, remembering the
result on the variance of a linear combination that I described as
essential to multivariate analysis theory, and using the result of
Equation 3.

Note that, since σ2 is not known, it must be estimated. The unbiased
estimator is

σ̂2 =

∑n
i=1 ê

2
i

n− p′
(12)

The estimate for the variance-covariance matrix of β̂ is therefore

Σ̂β̂β̂ = V̂ar(β̂) = σ̂2(X ′X)−1 (13)

(b) (10 points). Start up R, and load in the file KidIqData.csv, using
the read.csv command. Download the R Utility Functions from the
R section of the website. They are accessible under the R Utility
Functions link.
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Load in the functions as shown below. The actual filename is Steiger
R Library Functions.txt. You will probably find it convenient to
attach the data file. Treat the variable kid.iq as the dependent
variable y, and treat the variables mom.iq and mom.grad as the pre-
dictors in a matrix X. Verify that the file has 500 observations on 3
variables. Add an intercept variable (a column of 1’s) to X. Here is
an example of how to do this.

data <- read.csv("KidIqData.csv")

attach(data)

dim(data)

## [1] 500 3

names(data)

## [1] "kid.iq" "mom.iq" "mom.grad"

## Create an intercept variable

source("Steiger R Library Functions.txt")

one <- UnitVector(500)

X <- cbind(one,mom.iq,mom.grad)

y <- kid.iq

The variable mom.grad is a binary variable coded 0-1, depending
on whether the mother graduated from high school. Using the lm

function, predict kid.iq from mom.iq and mom.grad and save the
result as a lm object. (Note, if you don’t know how to do this, examine
the online lecture notes on multiple regression and chapters 3 and 4
from Gelman and Hill.) Apply the summary function to the object.
You should see values for the intercept and regression coefficients
corresponding to β′ = [32.83, 0.66, 14.99]. Notice also that there are
standard errors reported for the coefficients. The standard errors are,
respectively, 4.891,0.049, 1.948. Notice also that the program prints
a “Residual Standard Error” of 14.46. This is the square root of the
quantity defined in Equation 12. Here is the actual output.

##

## Call:

## lm(formula = kid.iq ~ mom.iq + mom.grad)

##

## Residuals:

## Min 1Q Median 3Q Max

## -37.183 -9.282 -0.201 10.247 37.993

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 32.83107 4.89084 6.713 5.22e-11 ***
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## mom.iq 0.66067 0.04934 13.390 < 2e-16 ***

## mom.grad 14.98590 1.94786 7.694 7.76e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 14.46 on 497 degrees of freedom

## Multiple R-squared: 0.4631,Adjusted R-squared: 0.4609

## F-statistic: 214.3 on 2 and 497 DF, p-value: < 2.2e-16

Calculate β̂ from Equation 5, and verify that it agrees with
the R output.

(c) (10 points). Once you have the fit object, it is easy to extract the
residuals. Just apply the residuals function to the fit object you
have saved. Calculate the estimated residual variance defined
in Equation 12. Check that its square root is equal to the “resid-
ual standard error” shown in the R output. (Hint. Remember the
definition of p′.)

The predicted scores can be generated in R by applying the predict

function to the linear model object. Of course, we can also calculate
them as Pxy. My support routines contain the functions P and Q

to allow you to create projectors easily and directly. Compute the
predicted scores using predict, and extract the first predicted score.
Compare it to the first element of the array calculated in R using
the as y.hat <- P(X) %*% y. Then compare the value of the first
element of the vector of residuals produced by the residuals func-
tion, and verify that (Q(X) %*% y)[1] is in fact equal to the first
residual.

(d) (10 points). Using the estimated residual variance you computed
in the preceding part, and also using the result of Equation 13, com-
pute the estimated standard errors of the elements of β̂, and
verify that they agree with the R output.

(e) (10 points). The squared multiple correlation R2 between y and the
non-intercept variables in X can be calculated in a number of ways.
One way is from a formula analogous to the population formula given
in the lecture slides on Key Regression Algebra, i.e.

R2 =
syxS

−1
xx sxy
s2y

=
s′xyS

−1
xx sxy

s2y
(14)

Another way is to use the linear model fit object, compute the cor-
relation between y and ŷ, and square it, i.e.

R2 = r2y,ŷ (15)
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Compute R2 both ways with R (remember, the first calculation will
require that you drop the intercept column from X), and verify that
the result agrees with the value of 0.4631 printed in the summary
table from the lm object.

(f) (5 points). Verify in one line of R that the predicted and error
scores from the linear model analysis have a correlation of zero.

2. Eigenvalues and Eigenvectors. Load in the data from the AthleticsData.csv
file.

(a) (10 points). Compute the correlation matrix for the AthleticsData.
Call it Ryy. Then compute the eigenvectors and eigenvalues of the
correlation matrix using the eigen command. Create a matrix V
containing the eigenvectors and a diagonal matrix D containing the
eigenvalues on the diagonal. Verify in R that

Ryy = V DV ′ = FF ′

up to rounding error by computing the square root of the sum of
squared differences between Ryy and V DV ′.

(b) (10 points). Compute F = V D1/2 The matrix is sometimes called
the “principal component pattern.” Install the psych library on your
system, load the library, and compute the raw principal component
pattern with the command

principal(AthleticsData,nfactors=9,rotate="none").

Compare the output with your F . Explain any discrepancy.

(c) (10 points). Extract the first 3 columns of your F . Call the ex-

tracted columns G. Compute R̂ = GG′, and compare it to Ryy

as follows. Extract the elements of Ryy into an 81 × 1 vector, and,

likewise, extract the elements of R̂ as an 81×1 vector. Compute the
correlation between the two vectors and do a scatterplot. Add an
identity line (slope 1, intercept 0) to the plot to aid interpretation.
Notice anything interesting in the scatterplot? Is there some way you
could “clean up” the scatterplot to improve it as a way of comparing
the two matrices?

3. (15 points). In the class notes on Key Regression Algebra, we discussed
a “regression component” system of the form

y = Fx+ e

in which all variables are in deviation score form. We define Σ = E(yy′),
and assume x = B′y, and F is a set of least squares linear regression
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weights for predicting y from x. In the notes, we showed that F can be
computed as

F = ΣB(B′ΣB)−1 (16)

This means that given B and Σ, the system is completely determinate.

(a) Using simple (but careful and involved) substitution, show that, given
F and Σ, B is completely determined and may be calculated as

B = Σ−1F (F ′Σ−1F )−1 (17)

(Hint : simply substitute Equation 16 into the right side of Equation
17 and show it reduces to B.)

(b) Principal components analysis is a special case of regression compo-
nent analysis, so we may apply the rules of the latter to the former.
Earlier, we demonstrated that if Σ = V DV ′ is an Eckart-Young de-
composition of Σ into eigenvectors and eigenvalues, that the principal
components pattern may be written as F = V D1/2. Using Equation
17, and your knowledge of matrix factorization and symmetric square
roots, prove that, if F = V D1/2, then B = V D−1/2.

(c) Prove that, if x = B′y, and B = V D−1/2, then Var(x) = E(xx′) =
I.
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