Homework 1

Psychology 312

- 1. (12 points) Suppose you have a set of data in the variable X having a sample mean $\overline{x}_{\bullet} = 100$ and a sample standard deviation $S_X = 10$. For each of the following transformed variables, indicate the mean \overline{y}_{\bullet} and the standard deviation S_Y .
 - (a) $y_i = 2x_i$
 - (b) $y_i = x_i 5$
 - (c) $y_i = (x_i \overline{x}_{\bullet})/S_X$
 - (d) $y_i = 2(x_i 5)/10 + 7$
- 2. (6 points). A set of scores that are in Z-score form has a mean of 0 and a standard deviation of 1. Suppose they are multiplied by 10, then 5 is added to each number. What will be the mean and standard deviation of the resulting scores?
- 3. (16 points). You have two sets of scores X and Y, on the same N individuals. Suppose $\overline{x}_{\bullet} = 34.5$, $\overline{y}_{\bullet} = 44.9$, $S_X^2 = 38.8$, $S_Y^2 = 44.4$, and $S_{XY} = 20$.
 - (a) Compute the mean and variance of the linear combination scores $w_i = 2x_i y_i$.
 - (b) Compute the covariance and correlation between the two linear combinations $a_i = x_i + y_i$ and $b_i = x_i 2y_i$.
- 4. (8 points). The grades in a particular course have a mean of 70 and a standard deviation of 10. However, they are supposed to have a mean of 65 and a standard deviation of 8. You and a friend are the teaching assistants in the course, and are asked to transform the grades. You decide to multiply each grade by .8, then add 9 to each grade. You are about to do this when your friend interrupts you, and says that you should *first* add 11.25 to each score, and *then* multiply by .8. Who is correct?
- 5. (8 points). Given random variables X and Y, suppose it is known that both random variables have zero means, and that $\mathcal{E}(X^2) = 9$, $\mathcal{E}(Y^2) = 4$, and that $\mathcal{E}(XY) = 4$. Find the covariance and correlation between X and Y, i.e., ρ_{xy} and σ_{xy} .

6. (20 points). Given the following matrices

	1	4	9 -	, B =	1	3	13		6	$\overline{7}$	5]
A =	0	6	7	, B =	2	2	4	, C =	6	8	6
	3	3	8 _		3	1	7		15	19	11

Compute the following:

- (a) A + B
- (b) CC'
- (c) **A C**
- (d) $\operatorname{Tr}(\boldsymbol{A}\boldsymbol{A}')$
- (e) $\operatorname{Tr}(\mathbf{A}'\mathbf{C})$

	[1]	0	0]
7. (5 points). Which descriptor below is <i>not</i> true of this matrix?	0	3	0
	0	0	5

- (a) Square matrix
- (b) Scalar matrix
- (c) Diagonal matrix
- (d) Symmetric matrix
- (e) Lower triangular matrix