Homework 1

Psychology 312

1. (12 points) Suppose you have a set of data in the variable X having a sample mean $\bar{x}_{\bullet}=100$ and a sample standard deviation $S_{X}=10$. For each of the following transformed variables, indicate the mean \bar{y} • and the standard deviation S_{Y}.
(a) $y_{i}=2 x_{i}$
(b) $y_{i}=x_{i}-5$
(c) $y_{i}=\left(x_{i}-\bar{x}_{\bullet}\right) / S_{X}$
(d) $y_{i}=2\left(x_{i}-5\right) / 10+7$
2. (6 points). A set of scores that are in Z-score form has a mean of 0 and a standard deviation of 1 . Suppose they are multiplied by 10 , then 5 is added to each number. What will be the mean and standard deviation of the resulting scores?
3. (16 points). You have two sets of scores X and Y, on the same N individuals. Suppose $\bar{x}_{\bullet}=34.5, \bar{y}_{\bullet}=44.9, S_{X}^{2}=38.8, S_{Y}^{2}=44.4$, and $S_{X Y}=20$.
(a) Compute the mean and variance of the linear combination scores $w_{i}=2 x_{i}-y_{i}$.
(b) Compute the covariance and correlation between the two linear combinations $a_{i}=x_{i}+y_{i}$ and $b_{i}=x_{i}-2 y_{i}$.
4. (8 points). The grades in a particular course have a mean of 70 and a standard deviation of 10 . However, they are supposed to have a mean of 65 and a standard deviation of 8 . You and a friend are the teaching assistants in the course, and are asked to transform the grades. You decide to multiply each grade by .8 , then add 9 to each grade. You are about to do this when your friend interrupts you, and says that you should first add 11.25 to each score, and then multiply by .8. Who is correct?
5. (8 points). Given random variables X and Y, suppose it is known that both random variables have zero means, and that $\mathcal{E}\left(X^{2}\right)=9$, $\mathcal{E}\left(Y^{2}\right)=4$, and that $\mathcal{E}(X Y)=4$. Find the covariance and correlation between X and Y, i.e., $\rho_{x y}$ and $\sigma_{x y}$.
6. (20 points). Given the following matrices
$\boldsymbol{A}=\left[\begin{array}{lll}1 & 4 & 9 \\ 0 & 6 & 7 \\ 3 & 3 & 8\end{array}\right], \boldsymbol{B}=\left[\begin{array}{rrr}1 & 3 & 13 \\ 2 & 2 & 4 \\ 3 & 1 & 7\end{array}\right], \boldsymbol{C}=\left[\begin{array}{rrr}6 & 7 & 5 \\ 6 & 8 & 6 \\ 15 & 19 & 11\end{array}\right]$
Compute the following:
(a) $\boldsymbol{A}+\boldsymbol{B}$
(b) $\boldsymbol{C} C^{\prime}$
(c) $\boldsymbol{A}-\boldsymbol{C}$
(d) $\operatorname{Tr}\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)$
(e) $\operatorname{Tr}\left(\boldsymbol{A}^{\prime} \boldsymbol{C}\right)$
7. (5 points). Which descriptor below is not true of this matrix? $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$
(a) Square matrix
(b) Scalar matrix
(c) Diagonal matrix
(d) Symmetric matrix
(e) Lower triangular matrix
