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Introduction

Introduction

Previously, we studied factor analytic methods as an approach to
understanding the key sources of variation within sets of variables.

There are situations in which we have several sets of variables, and we
seek an understanding of key dimensions that are correlated across sets.

Canonical correlation analysis is the one of the oldest and best known
methods for discovering and exploring dimensions that are correlated
across sets, but uncorrelated within set.
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Exploring Redundancy in Sets of Variables An Example – Personality and Achievement

The relationship between personality and achievement is of interest.

Suppose the x variables are a set of personality scale scores, and the y
variables are a set of academic achievement scores.

Then the first canonical variate in each set will isolate dimensions of
personality and achievement that predict each other well.
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Basic Properties of Canonical Variates

Basic Properties of Canonical Variates

Canonical Correlation Analysis (CCA) is, in a sense, a combination of the
ideas of principal component analysis and multiple regression.

In CCA, we have two sets of variables, x and y, and we seek to understand
what aspects of the two sets of variables are redundant.

The CCA approach seeks to find canonical variates, linear combinations of
the variables in x and y.

There are different canonical variates within each set. If there are q1

variables in x and q2 variables in y, then there are at most k = min(q1, q2)
canonical variates in either set. These are ui = a′ix, and vi = b′iy, with i
ranging from 1 to k.
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Basic Properties of Canonical Variates

Basic Properties of Canonical Variates

Within each set, the k distinct canonical variates are uncorrelated. Across
each set, ui and vj are uncorrelated, unless i = j .

The correlation between corresponding canonical variates ui and vi is the
ith canonical correlation.

An alternate view of the first canonical variate is that it is the linear
combination of variables in one set that has the highest possible multiple
correlation with the variables in the other set.
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Calculating Canonical Variates

Calculating Canonical Variates

Defining the canonical variates is tantamount to deriving expressions for ai
and bi .

Clearly, since correlations are invariant under linear transformations, there
are infinitely many ways we might define canonical variates.

It is important to realize that textbooks, in general, are very confused (or
at least very confusing) in their treatments of canonical correlation.

In particular, there are different meanings of the same term, depending on
which book you read.
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Calculating Canonical Variates The Fundamental Result

Calculating Canonical Variates
The Fundamental Result

A number of textbooks books derive the fact that the linear weights
producing canonical variates with maximum possible correlation can be
computed as an eigenvector problem.

Specifically, ai may be computed as the ith eigenvector of S−1
xx SxyS

−1
yy Syx .

The squared canonical correlation r 2
i is the corresponding eigenvalue.

Likewise, bi is the ith eigenvector of S−1
yy SyxS

−1
xx Sxy .
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Calculating Canonical Variates The Geometric View

Calculating Canonical Variates
The Geometric View
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Calculating Canonical Variates Different Kinds of Canonical Weights

Calculating Canonical Variates
Different Kinds of Canonical Weights

You don’t have to look at many textbook presentations of canonical
correlation to realize that the canonical weights presented do not
necessarily agree with those produced by various computer programs.

In some cases, the discrepancies are the result of error, but you should also
be aware that there are several different kinds of canonical weights:

Completely Raw. These weights are, in fact, the eigenvectors
described on the previous slide, computed from the covariance
matrices.

Partially Standardized. These weights are multiplied by a constant, so
the the resulting canonical variates have unit variance.

Fully Standardized. These weights are computed on standardized
variables (i.e., correlation matrices), then multiplied by a constant so
that the resulting canonical variates have unit variance.
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Calculating Canonical Variates Partially Standardized Weights

Calculating Canonical Variates
Partially Standardized Weights

Let A and B contain the raw canonical weights obtained via eigenvector
decompositions.

Then the canonical variates are U = XA and V = YB. To standardize the
canonical variates, we recall that Var(U) = A′SxxA, and
Var(V) = B′SyyB.

Consequently, we need only postmultiply U and V by the symmetric
inverse square root of their covariance matrices.
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Calculating Canonical Variates Partially Standardized Weights

Calculating Canonical Variates
Partially Standardized Weights

Thus, we have

U∗ = XA(A′SxxA)−1/2

V∗ = YB(B′SyyB)−1/2

which may be expressed as U∗ = XA∗, V∗ = YB∗, with

A∗ = A(A′SxxA)−1/2

B∗ = B(B′SyyB)−1/2 (1)

(2)

To add to the confusion, SAS refers to these partially standardized weights
as “raw canonical weights.”
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Calculating Canonical Variates Fully Standardized Weights

Calculating Canonical Variates
Fully Standardized Weights

In fully standardized canonical correlation analysis, we operate on Z scores
instead of raw scores for both x and y variables.

In score notation, the canonical weights As and Bs are the first k
eigenvectors of R−1

xx RxyR
−1
yy Ryx and R−1

yy RyxR
−1
xx Rxy , respectively,

restandardized as in the previous slide.

The canonical variate scores themselves are obtained by applying the
canonical weights to Zx and Zy , the sample Z -scores. SAS refers to these
weights as the “standardized weights.”
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A Simple Example The Data

A Simple Example
The Data

Suppose we have an X and Y given by

X =



1 1 3
2 3 2
1 1 1
1 1 2
2 2 3
3 3 2
1 3 2
4 3 5
5 5 5


, Y =



4 4 −1.07846
3 3 1.214359
2 2 0.307180
2 3 −0.385641
2 1 −0.078461
1 1 1.61436
1 2 0.814359
2 1 −0.0641016
1 2 1.535900


(3)
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A Simple Example The Data

A Simple Example
The Data

In this highly artificial example, I constructed the third column of Y from
the columns of X with the linear weights a′1 = [.4, .6,−

√
.48].

Here are some questions:

What should the first vector of canonical weights for the Y variates
be?

What should the first canonical correlation be?
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A Simple Example The Data

A Simple Example
The Data

To answer the two questions on the preceding slide, recall that the purpose
of canonical correlation analysis is to (a) find and (b) characterize the
linear redundancy between two sets of variates.

In our simple example, one of the variates in Y can be reproduced exactly
as a linear combination of the three variates in X.

Canonical correlation analysis (if it is working properly) will simply select
y3 as the first canonical variate in the Y set, with canonical weights
b′1 = [001], and recover the linear combination of the variables in the first
group that was used to generate y3 by giving a′1 = [.4, .6,−

√
.48] as the

canonical weights for the X set.

The first canonical correlation will, of course, be 1.
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A Simple Example Basic Calculations in R

A Simple Example
Basic Calculations in R

We have discussed three different ways of performing canonical correlation
analysis:

Completely Raw.

Partially Standardized.

Fully Standardized.

Let’s perform the calculations in R.

We’ll start with the “Completely Raw” calculation.
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A Simple Example Basic Calculations in R

A Simple Example
Basic Calculations in R

First, we download necessary data and utility routines, which establish
variable sets X and Y for further analysis.

> source("http://www.statpower.net/R312/Steiger R Library Functions.txt")

> source("http://www.statpower.net/R312/Data 1.txt")

> X

[,1] [,2] [,3]

[1,] 1 1 3

[2,] 2 3 2

[3,] 1 1 1

[4,] 1 1 2

[5,] 2 2 3

[6,] 3 3 2

[7,] 1 3 2

[8,] 4 3 5

[9,] 5 5 5

> Y

[,1] [,2] [,3]

[1,] 4 4 -1.07846

[2,] 3 3 1.21436

[3,] 2 2 0.30718

[4,] 2 3 -0.38564

[5,] 2 1 -0.07846

[6,] 1 1 1.61436

[7,] 1 2 0.81436

[8,] 2 1 -0.06410

[9,] 1 2 1.53590
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A Simple Example Basic Calculations in R

A Simple Example
Basic Calculations in R

To calculate the completely raw weights, we need the variance-covariance
matrices for X and Y, as well as the cross-covariance matrices.

> S.xy <- cov(X, Y)

> S.xx <- var(X)

> S.yx <- cov(Y, X)

> S.yy <- var(Y)

Now that we have these matrices, it is easy to calculate the “completely
raw” canonical weights and canonical correlations in R.

> A <- eigen(solve(S.xx) %*% S.xy %*% solve(S.yy) %*% S.yx)$vectors

> B <- eigen(solve(S.yy) %*% S.yx %*% solve(S.xx) %*% S.xy)$vectors

> R <- sqrt(eigen(solve(S.yy) %*% S.yx %*% solve(S.xx) %*%

+ S.xy)$values)
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A Simple Example Basic Calculations in R

A Simple Example
Basic Calculations in R

The resulting weights for the first canonical variates are what we expected,
and the first canonical correlation is 1.
> A

[,1] [,2] [,3]

[1,] 0.4000 0.7961 -0.5776

[2,] 0.6000 -0.5838 0.4286

[3,] -0.6928 -0.1597 0.6947

> B

[,1] [,2] [,3]

[1,] 0.0000001941 0.53653 0.8348

[2,] -0.0000004336 -0.84377 -0.1386

[3,] 1.0000000000 -0.01364 0.5329

> R

[1] 1.00000 0.51938 0.09103
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A Simple Example Partially Standardized Weights

A Simple Example
Partially Standardized Weights

To standardize the weights so that the canonical variances have variances
of 1, we need to apply the correction shown earlier.

> ## Singly standardized weights (SAS 'raw')

> A.single <- A %*% solve(sqrt(diag(diag(var(X %*% A)))))

> B.single <- B %*% solve(sqrt(diag(diag(var(Y %*% B)))))

> A.single

[,1] [,2] [,3]

[1,] 0.4324 1.4468 -0.8180

[2,] 0.6485 -1.0610 0.6070

[3,] -0.7489 -0.2902 0.9838

> B.single

[,1] [,2] [,3]

[1,] 0.0000002098 0.84865 1.5200

[2,] -0.0000004686 -1.33462 -0.2524

[3,] 1.0809120704 -0.02158 0.9702
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A Simple Example Fully Standardized Weights

A Simple Example
Fully Standardized Weights

To compute fully standardized weights, we need to calculate Z -scores for
our data.

We begin by using the Q operator to convert the scores into deviation
scores.

Recall that we learned that Q1, the complementary orthogonal projector
for a vector of 1’s, will convert a column of scores into deviation score
form. The R library functions include a UnitVector function and a Q
function that make this easy.
> ## Deviation score X,Y

> X.dev <- Q(UnitVector(9)) %*% X

> Y.dev <- Q(UnitVector(9)) %*% Y
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A Simple Example Fully Standardized Weights

A Simple Example
Fully Standardized Weights

To convert the deviation scores to Z -scores, we multiply each column by
the inverse standard deviation of the scores in that column.

There are lots of ways we can do this. I’m using the matrix algebra
approach of post-multiplying by a diagonal matrix with diagonal entries
equal to the inverse standard deviation.
> ## Z-score X,Y Create diagonal matrices with standard

> ## deviations Then invert using solve

> D.x <- solve(sqrt(diag(diag(var(X)))))

> D.y <- solve(sqrt(diag(diag(var(Y)))))

> ## Postmultiply the deviation score matrix to create

> ## Z-scores

> Z.x <- X.dev %*% D.x

> Z.y <- Y.dev %*% D.y

James H. Steiger (Vanderbilt University) 23 / 34



A Simple Example Fully Standardized Weights

A Simple Example
Fully Standardized Weights

Finally, we apply the identical method used to compute the singly
standardized (“SAS Raw”) canonical variates, except that we use Z -scores
and correlation matrices instead of raw scores and covariance matrices.

> R.xy <- cor(X, Y)

> R.xx <- cor(X)

> R.yx <- cor(Y, X)

> R.yy <- cor(Y)

> A.s <- eigen(solve(R.xx) %*% R.xy %*% solve(R.yy) %*% R.yx)$vectors

> B.s <- eigen(solve(R.yy) %*% R.yx %*% solve(R.xx) %*% R.xy)$vectors

> A.fully <- A.s %*% solve(sqrt(diag(diag(var(Z.x %*% A.s)))))

> B.fully <- B.s %*% solve(sqrt(diag(diag(var(Z.y %*% B.s)))))
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A Simple Example Fully Standardized Weights

A Simple Example
Fully Standardized Weights

> A.fully

[,1] [,2] [,3]

[1,] 0.6405 2.1432 -1.2118

[2,] 0.8647 -1.4146 0.8093

[3,] -1.0443 -0.4046 1.3719

> B.fully

[,1] [,2] [,3]

[1,] 0.0000002098 0.84865 1.5200

[2,] -0.0000004940 -1.40682 -0.2660

[3,] 0.9999999345 -0.01996 0.8976
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A Canonical Correlation Function

A Canonical Correlation Function

I put together the calculations for canonical correlation in a library
function called CanCorr.r. Let’s load it in and try it on the X and Y
data. I store the output in an object called output so that I can examine
the results piece-by-piece.

> source("http://www.statpower.net/R312/CanCorr.r")

> ## Analyze

> output <- canonical.cor(X, Y)
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A Canonical Correlation Function

A Canonical Correlation Function

Let’s start by examining the canonical correlations and the significance
tests that accompany them.

> output[1]

$`Canonical Correlations`

Canonical R Wilk's Lambda F df1 df2

[1,] 1.00000 2.026e-13 136016.33779 9 7.452

[2,] 0.51938 7.242e-01 0.35019 4 8.000

[3,] 0.09103 9.917e-01 0.04178 1 5.000

p value

[1,] 1.580e-18

[2,] 8.370e-01

[3,] 8.461e-01

In this case, the first canonical correlation is overwhelmingly significant,
but neither of the additional two canonical correlations is significant.
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A Canonical Correlation Function

A Canonical Correlation Function

We print the singly standardized (SAS “Raw”) canonical weights. These
can be interpreted much like the factor loadings from a factor analysis of a
covariance matrix. We see, in particular, is that the first canonical variate
on the Y side is almost precisely colinear with Y3.

> output[2:3]

$`X (SAS) Raw Weights`

[,1] [,2] [,3]

[1,] 0.4324 1.4468 0.8180

[2,] 0.6485 -1.0610 -0.6070

[3,] -0.7489 -0.2902 -0.9838

$`Y (SAS) Raw Weights`

[,1] [,2] [,3]

[1,] 0.0000002098 0.84865 1.5200

[2,] -0.0000004686 -1.33462 -0.2524

[3,] 1.0809120704 -0.02158 0.9702
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A Canonical Correlation Function

A Canonical Correlation Function

Next come the fully standardized weights

> output[4:5]

$`X Fully Standardized Weights`

[,1] [,2] [,3]

[1,] 0.6405 2.1432 1.2118

[2,] 0.8647 -1.4146 -0.8093

[3,] -1.0443 -0.4046 -1.3719

$`Y Fully Standardized Weights`

[,1] [,2] [,3]

[1,] 0.0000002098 0.84865 1.5200

[2,] -0.0000004940 -1.40682 -0.2660

[3,] 0.9999999345 -0.01996 0.8976

James H. Steiger (Vanderbilt University) 29 / 34



A Canonical Correlation Function

A Canonical Correlation Function

For comparison to other software, the canonical.cor function also prints
Canonical Loadings, the correlations between the observed variables and
the canonical variables.

> output[6:7]

$`X Canonical Loadings`

[,1] [,2] [,3]

[1,] 0.508428 0.6402 -0.5758

[2,] 0.772114 0.1219 -0.6237

[3,] -0.006404 0.4936 -0.8696

$`Y Canonical Loadings`

[,1] [,2] [,3]

[1,] -0.6630 -0.1390795978 0.73556069686

[2,] -0.4142 -0.7947228961 0.44372120723

[3,] 1.0000 -0.0000003634 0.00000006489

Rencher (his section 11.5.2) argues against using the loadings as an aid to
interpretation.
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Some Examples UCLA Academics Data

Some Examples
UCLA Academics Data

Next, we examine an example from the UCLA Statistics website.
> ## grab UCLA data

>

> mm <- read.csv("http://www.statpower.net/R312/UCLACCData.txt")

> attach(mm)

> X <- mm[, 1:3]

> Y <- mm[, 4:8]

>

> ## Analyze

> output <- canonical.cor(X, Y)
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Some Examples UCLA Academics Data

Some Examples
UCLA Academics Data

> output[1]

$`Canonical Correlations`

Canonical R Wilk's Lambda F df1 df2

[1,] 0.4641 0.7544 11.716 15 1635

[2,] 0.1675 0.9614 2.944 8 1186

[3,] 0.1040 0.9892 2.165 3 594

p value

[1,] 7.498e-28

[2,] 2.905e-03

[3,] 9.109e-02

James H. Steiger (Vanderbilt University) 32 / 34



Some Examples UCLA Academics Data

Some Examples
UCLA Academics Data

> output[4:5]

$`X Fully Standardized Weights`

[,1] [,2] [,3]

locus_of_control 0.8404 0.4166 0.4435

self_concept -0.2479 0.8379 -0.5833

motivation 0.4327 -0.6948 -0.6855

$`Y Fully Standardized Weights`

[,1] [,2] [,3]

read 0.45080 0.04961 -0.21601

write 0.34896 -0.40921 -0.88810

math 0.22047 -0.03982 -0.08848

science 0.04878 0.82660 1.06608

female 0.31504 -0.54057 0.89443
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Some Examples Work Satisfaction Data

Some Examples
Work Satisfaction Data

Here’s another!
> ## grab Work Satisfaction data

> worksat <- read.csv("http://www.statpower.net/R312/worksat.csv")

> names(worksat)

[1] "ID"

[2] "SupervisorSatisfaction.Y1."

[3] "CareerFutureSatisfaction.Y2."

[4] "FinancialSatisfaction.Y3."

[5] "WorkloadSatisfaction.Y4."

[6] "CompanyIdentification.Y5."

[7] "WorkTypeSatisfaction.Y6."

[8] "GeneralSatisfaction.Y7."

[9] "FeedbackQuality.X1."

[10] "TaskSignificance.X2."

[11] "TaskVariety.X3."

[12] "TaskIdentity.X4."

[13] "Autonomy.X5."
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Some Examples Health Club Data

Here’s another example. You try it!
> ## grab Work Satisfaction data

> health <- read.csv("http://www.statpower.net/R312/HealthClub.csv")

> names(health)

[1] "Weight" "Waist" "Pulse" "Chins" "Situps"

[6] "Jumps"
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