
Matrix Multiplication 
 
Matrix multiplication is an operation with 
properties quite different from its scalar 
counterpart.  
 
To begin with, order matters in matrix 
multiplication. That is, the matrix product AB need 
not be the same as the matrix product BA. Indeed, 
the matrix product AB might be well-defined, 
while the product BA might not exist.  
 



Definition (Conformability for Matrix 
Multiplication).   
 
p qA  and r sB  are conformable for matrix 
multiplication as AB if and only if q r=  . 
 



 
Definition (Matrix Multiplication). Let 

{ }p q ija=A  and { }q s ijb=B  .  
 
Then { }p s ikc= =C AB  where 
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=∑  (1) 

 



Example (The Row by Column Method). The 
meaning of the formal definition of matrix 
multiplication might not be obvious at first glance. 
Indeed, there are several ways of thinking about 
matrix multiplication.  



The first way, which I call the “row by column 
approach,” works as follows. Visualize p qA  as a 
set of p row vectors and q sB  as a set of s  column 
vectors. Then if =C AB , element ikc  of C is the 
scalar product (i.e., the sum of cross products) of 
the ith row of A with the kth column of B.  
 



For example, let 
2 4 6
5 7 1
2 3 5

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  , and let 

4 1
0 2
5 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B   

Then 
38 16
25 20
33 13

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

C AB   .  



The following are some key properties of matrix 
multiplication: 
 
1) Associativity. 

 ( ) ( )=AB C A BC  (2) 

 
2) Not generally commutative. That is, often 

≠AB BA. 
 
3) Distributive over addition and subtraction.  
 



 ( )+ = +C A B CA CB (3) 

 
4) Assuming it is conformable, the identity matrix 
I functions like the number 1, that is  
 

 = =AI IA A (4) 

 
5) =AB 0 does not necessarily imply that either 
=A 0 or =B 0 . 

 



Several of the above results are surprising, and 
result in negative transfer for beginning students as 
they attempt to reduce matrix algebra expressions. 
 



Example (A Null Matrix Product). The following 
example shows that one can, indeed, obtain a null 
matrix as the product of two non-null matrices. Let 

[ ]6 2 2′ =a  , and let 
8 12 12

12 40 4
12 4 40

−⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦

B  . 

Then [ ]0 0 0′ =a B  .  
 



Definition (Pre-multiplication and Post-
multiplication).  
 
When we talk about the “product of matrices A 
and B,” it is important to remember that AB and 
BA are usually not the same. Consequently, it is 
common to use the terms “pre-multiplication” and 
“post-multiplication.” When we say “A is post-
multiplied by B,” or “B is pre-multiplied by A,” 
we are referring to the product AB . When we say 
“B is post-multiplied by A,” or “A is pre-
multiplied by B,” we are referring to the product 
BA .  



 
Matrix Transposition 
 
“Transposing” a matrix is an operation which 
plays a very important role in multivariate 
statistical theory. The operation, in essence, 
switches the rows and columns of a matrix. 
 



Definition (Matrix Transposition).  
 
Let { }p q ija=A  . Then the transpose of A, denoted 
′A  or TA , is defined as  

 

 { } { }q p ij jib a′= = =B A  (5) 

 
 



 Example (Matrix Transposition). 
 
 
 

Let 
1 2 3
1 4 5
⎡ ⎤

= ⎢ ⎥⎣ ⎦
A   . Then 

1 1
2 4
3 5

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

A    

  



Properties of Matrix Transposition. 
 
 ( )′′ =A A   

 ( )c c′ ′=A A   

 ( )′ ′ ′+ = +A B A B   

 ( )′ ′ ′=AB B A   
 
A square matrix A is symmetric if and only if 

′=A A  
 
 



Partitioning of Matrices 
 
In many theoretical discussions of matrices, it will 
be useful to conceive of a matrix as being 
composed of sub-matrices. When we do this, we 
will “partition” the matrix symbolically by 
breaking it down into its components. The 
components can be either matrices or scalars.  



 
Example.  In simple multiple regression, where 
there is one criterion variable y and p predictor 
variables in the vector x, it is common to refer to 
the correlation matrix of the entire set of variables 
using partitioned notation. So we can write 
 

 
1 y

y

′⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x

x xx

r
R

r R
 (6) 

 



Order of a Partitioned Form 
 
We will refer to the “order” of the “partitioned 
form” as the number of rows and columns in the 
partitioning, which is distinct from the number of 
rows and columns in the matrix being represented. 
For example, suppose there were 5p =  predictor 
variables in the example of Equation (6). Then the 
matrix R is a 6 6×  matrix, but the example shows a 
“ 2 2×  partitioned form.” 
 



When matrices are partitioned properly, it is 
understood that “pieces” that appear to the left or 
right of other pieces have the same number of 
rows, and pieces that appear above or below other 
pieces have the same number of columns. So, in 
the above example, xxR , appearing to the right of 
the 1p×  column vector yxr , must have p rows, and 
since it appears below the 1 p×  row vector  y′xr , it 
must have p columns. Hence, it must be a p p×  
matrix. 



Linear Combinations of Matrix Rows and 
Columns 
 
We have already discussed the “row by column” 
conceptualization of matrix multiplication. 
However, there are some other ways of 
conceptualizing matrix multiplication that are 
particularly useful in the field of multivariate 
statistics. To begin with, we need to enhance our 
understanding of the way matrix multiplication and 
transposition works with partitioned matrices. 
 



 Definition. (Multiplication and Transposition of 
Partitioned Matrices).   
 
1. To transpose a partitioned matrix, treat the sub-
matrices in the partition as though they were 
elements of a matrix, but transpose each sub-
matrix. The transpose of a p q×  partitioned form 
will be a q p×  partitioned form. 
 
2. To multiply partitioned matrices, treat the sub-
matrices as though they were elements of a matrix. 
The product of p q×  and q r×  partitioned forms is 
a p r×  partitioned form. 



 
Some examples will illustrate the above definition. 
 
Example (Transposing a Partitioned Matrix).   
 
Suppose A is partitioned as  
 

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C D
A E F

G H
. Then 

′ ′ ′⎡ ⎤′ = ⎢ ⎥′ ′ ′⎣ ⎦

C E G
A

D F H
 

 



 Example (Product of Two Partitioned 
Matrices). 
 

Suppose [ ]=A X Y  and ⎡ ⎤
= ⎢ ⎥⎣ ⎦

G
B

H
.   

 
Then (assuming conformability) 
 

 = +AB XG YH 

 
 



 Example (Linearly Combining Columns of a 
Matrix). 
 
Consider an N p×  matrix X , containing the scores 
of N  persons on p variables. One can 
conceptualize the matrix as a set of p column 
vectors. In “partitioned matrix form,” we can 
represent X as  

 1⎡ ⎤= ⎣ ⎦2 3 pX x x x x  



Now suppose one were to post-multiply X with a 
1p×  vector b. The product is a 1N ×  column 

vector: 

 

 

1

2

31 2 3

1 1 2 2 3 3

p

p

p p

b
b
b

b

b b b b

=

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= + + + +

y Xb

x x x x

x x x x



 
Example (Computing Difference Scores).  
 
Suppose the matrix X consists of a set of scores on 
two variables, and you wish to compute the 
difference scores on the variables.  

 
80 70 10

1
77 79 2

1
64 64 0

=

⎡ ⎤ ⎡ ⎤
+⎡ ⎤⎢ ⎥ ⎢ ⎥= = −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

y Xb

 



 Example. (Computing Course Grades). 
 

 
80 70

1/3
77 79

2/3
64 64

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

=

1
3
1
3

73
78
64

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 



Example. (Linearly Combining Rows of a 
Matrix). 
 
Suppose we view the p q×  matrix X as being 
composed of p row vectors. If we pre-multiply X 
with a 1 p×  row vector ′b , the elements of ′b  are 
linear weights applied to the rows of X.  



 
Sets of Linear Combinations 
 
There is, of course, no need to restrict oneself to a 
single linear combination of the rows and columns 
of a matrix. To create more than one linear 
combination, simply add columns (or rows) to the 
post-multiplying (or pre-multiplying) matrix! 
  
80 70 150 10

1 1
77 79 156 2

1 1
64 64 128 0

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 



Example (Extracting a Column from a Matrix).  

1 4
4

2 5 0
5

3 6 1
6

⎡ ⎤
⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦

 



Definition (Selection Vector). The selection 
vector [ ]is  is a vector with all elements zero except 
the ith element, which is 1.  To extract the ith 
column of X, post-multiply by [ ]is  , and to extract 
the ith row of X, pre-multiply by [ ]i′s  . 

[ ] [ ]
1 4

0 1 0 2 5 2 5
3 6

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
  



Example (Exchanging Columns of a Matrix). 

1 4 4 1
0 1

2 5 5 2
1 0

3 6 6 3

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

  
  



Example (Rescaling Rows or Columns).  
 

1 4 2 12
2 0

2 5 4 15
0 3

3 6 6 18

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 



Example (Using Two Selection Vectors to 
Extract a Matrix Element). 

[ ]
1 4

0
1 0 0 2 5 4

1
3 6

⎡ ⎤
⎡ ⎤⎢ ⎥ =⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 



Matrix Algebra of Some Sample 
Statistics 
Converting to Deviation Scores 
 
Suppose x is an 1N ×  vector of scores for N  
people on a single variable. We wish to transform 
the scores in to deviation score form. (In general, 
we will find this a source of considerable 
convenience.) To accomplish the deviation score 
transformation, the arithmetic mean X• , must be 
subtracted from each score in x. 



Let 1 be a 1N ×  vector of ones.  
Then 

1

N

i
i

X
=

′=∑ 1 x 

and 
 

 
1

(1/ ) (1/ )
N

i
i

X N X N•
=

′= =∑ 1 x 

 



To transform to deviation score form, we need to 
subtract X• from every element of x. We need  

 

* ( )
/

( / )
( / )

( )

X
N
N
N

•= −
′= −
′= −
′= −

= −
= −
=

x x 1
x 11 x
x 11 x
Ix 11 x
Ix Px
I P x

Qx  



 Example  

 
2 /3 1/3 1/3 4 2
1/3 2 /3 1/3 2 0
1/3 1/3 2 /3 0 2

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Note that the ith row of Q gives you a linear 
combination of the N scores for computing the ith 
deviation score.  



Properties of the Q Operator 
 
 Definition (Idempotent Matrix). 
 
 A matrix C is idempotent if = =2CC C C 
  
Theorem.  If C is idempotent and I is a 
conformable identity matrix, then −I C is also 
idempotent. 
 
Proof. To prove the result, we need merely show 
that ( ) ( )2− = −I C I C . This is straightforward.  



Properties of the Q Operator 

 

( ) ( )( )2

2 2

− = − −

= − − +
= − − +
= −

I C I C I C

I CI IC C
I C C C
I C

 

 
 



Properties of the Q Operator 
 
Class Exercise. Prove that if a matrix A is 
symmetric, so is ′AA . 
 
Class Exercise. From the preceding, prove that if a 
matrix A is symmetric, then for any scalar c, the 
matrix cA is symmetric. 
 
Class Exercise. If matrices A and B are both 
symmetric and of the same order, then +A B and 
−A B must be symmetric. 



Properties of the Q Operator 
 
Recall that / N′=P 11  is an N N×  symmetric 
matrix with each element equal to 1/ N . P is also 
idempotent. (See handout.) 
 
It then follows that = −Q I P is also symmetric 
and idempotent. (Why? C.P.) 



The Sample Variance 
 
If *x  has scores in deviation score form, then 

 2 * *1/( 1)XS N ′= − x x  



The Sample Variance 
 
If scores in x are not in deviation score form, we 
may use the Q operator to convert it into deviation 
score form first. Hence, in general,  
 

 

2 1/( 1)
1/( 1)
1/( 1)

XS N
N
N

′ ′= −
′= −
′= −

x Q Qx
x QQx
x Qx

 



The Sample Covariance 
 
Do you understand each step below? Remember 
that ' '′= = = =Q Q QQ Q Q QQ  

 

*

*

* *

1/( 1)

1/( 1)
1/( 1)

1/( 1)
1/( 1)

1/( 1)

XYS N

N
N

N
N

N

′= −

′= −
′ ′= −

′= −
′ ′= −

′= −

x Qy

x y
x Q y

x y
x Q Qy

x y

 



Notational Conventions 
 
In what follows, we will generally assume, unless 
explicitly stated otherwise, that our data matrices 
have been transformed to deviation score form. 
(The operator discussed above will accomplish this 
simultaneously for the case of scores of N  subjects 
on several, say p, variates.) For example, consider 
a data matrix N pX  , whose p columns are the 
scores of N  subjects on p different variables. If 
the columns of X are in raw score form, the matrix 
Qx will have p columns of deviation scores. Why? 



 
Notational Conventions 
 
We shall concentrate on results in the case where 
is in “column variate form,” i.e., is an N p×  
matrix. Equivalent results may be developed for 
“row variate form” p N×  data matrices which 
have the N  scores on p variables arranged in p 
rows. The choice of whether to use row or column 
variate representations is arbitrary, and varies in 
books and articles.  
 



The Variance-Covariance Matrix 
 

 1/( 1)N ′= −XXS X QX 

If we assume X is in deviation score form, then 

 1/( 1)N ′= −XXS X X 

(Note: Some authors call XXS  a “covariance 
matrix.”) (Why would they do this?) 



Diagonal Matrices 
 
Diagonal matrices have special properties, and we 
have some special notations associated with them. 
We use the notation diag( )X  to signify a diagonal 
matrix with diagonal entries equal to the diagonal 
elements of X.  
 
We use “power notation” with diagonal matrices, 
in the following sense: Let D be a diagonal matrix. 
Then cD  is a diagonal matrix composed of the 
entries of D raised to the c power. 



Correlation Matrix 
 
For p variables in the data matrix X, the 
correlation matrix XXR  is a p p×  symmetric 
matrix with typical element ijr  equal to the 
correlation between variables i  and j  . Of course, 
the diagonal elements of this matrix represent the 
correlation of a variable with itself, and are all 
equal to 1.  



Correlation Matrix 
 

 1/ 2 1/ 2− −=XX XXR D S D  



(Cross-) Covariance Matrix 
 
Assume X and Y are in deviation score form. Then 
 

 1/( 1)N ′= −XYS X Y  

 



Variance-Covariance of Linear 
Combinations 
 
 
Theorem (Linear Combinations of Deviation 
Scores). Given X, a data matrix in column variate 
deviation score form. Any linear composite 
=Y Xb will also be in deviation score form. 



Variance and Covariance of Linear 
Combinations 
 
Theorem. (Variance-Covariance of Linear 
Combinations).  
 
a) If X has variance-covariance matrix xxS , then 
the linear combination =y Xb has variance 
′ XXb S b.   

 
b) The set of linear combinations =Y XB has 
variance-covariance matrix ′=YY XXS B S B.  



 
c) Two sets of linear combinations =W XB and 

=M YC have covariance matrix ′=WM XYS B S C. 
 



Trace of a Square Matrix 
 
Definition (Trace of a Square Matrix). 
 
The trace of a p p×  square matrix A is 

1
Tr( )

p

ii
i

a
=

= ∑A
 



Properties of the Trace 
 
1. ( ) ( )Tr( ) Tr Tr+ = +A B A B  
2. ( ) ( )Tr Tr ′=A A  
3. ( ) ( )Tr Trc c=A A  
4. ( )Tr ij ij

i j
a b′ = ∑∑A B  

5. ( ) 2Tr ij
i j

e′ = ∑∑E E  

6. The “cyclic permutation rule” 

 ( ) ( ) ( )Tr Tr Tr= =ABC CAB BCA  



 


