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Eigenvalues, Eigenvectors, Matrix 
Factoring, and Principal Components 
 
The eigenvalues and eigenvectors of a square matrix play 
a key role in some important operations in statistics. In 
particular, they are intimately connected with the 
determination of the rank of a matrix, and the “factoring” 
of a matrix into a product of matrices. 
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Determinant of a Square Matrix 
 
The determinant of a matrix A, denoted A  is a scalar 
function that is zero if and only if a matrix is of deficient 
rank. This fact is sufficient information about the 
determinant to allow the reader to continue through much 
of the remainder of this book. As needed, the reader 
should consult the more extensive treatment of 
determinants in the class handout on matrix methods. 
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Eigenvalues 
 
Definition (Eigenvalue and Eigenvector of a Square 
Matrix). 
 
For a square matrix A, a scalar c and a vector vv are an 
eigenvalue and associated eigenvector, v, respectively, if 
and only if they satisfy the equation,  
 c=Av v  (1) 
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Comment.   Note that if c=Av v , then of course 
( ) ( )k c k=A v v  for any scalar k, so eigenvectors are not 

uniquely defined. They are defined only up to their 
shape. To avoid a fundamental indeterminacy, we 
normally assume them to be normalized, that is satisfy 
the restriction that 1′ =v v .  
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Comment.  If c=Av v , then c− =Av v 0, and 
( )c− =A I v 0. Look at this last equation carefully. Note 
that c−A I  is a square matrix, and a linear combination 
of its columns is null, which means c−A I  is not of full 
rank. This implies that its determinant must be zero. So 
an eigenvalue c of a square matrix A must satisfy the 
equation 
 
 0c− =A I   (2) 
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Key Properties of Eigenvalues and Eigenvectors  
 
For N N×  matrix with eigenvalues ic  and associated 
eigenvectors iv  , the following key properties hold: 

1. ( )
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Key Properties of Eigenvalues and Eigenvectors  
 
3. Eigenvalues of a symmetric matrix with real elements 
are all real. 
 
4. Eigenvalues of a positive definite matrix are all 
positive. 
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Key Properties of Eigenvalues and Eigenvectors  
 
5. If a N N×  symmetric matrix A is positive semidefinite 
and of rank r , it has exactly r  positive eigenvalues and 
p r−  zero eigenvalues. 
 
6. The nonzero eigenvalues of the product AB are equal 
to the nonzero eigenvalues of BA. Hence the traces  of 
AB and BA are equal. 
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Key Properties of Eigenvalues and Eigenvectors  
 
7. The eigenvalues of a diagonal matrix are its diagonal 
elements. 
 
8. The scalar multiple bA has eigenvalue ibc  with 
eigenvector iv  . Proof: i i ic=Av v  implies immediately 
that ( ) ( )i i ib bc=A v v . 
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Key Properties of Eigenvalues and Eigenvectors  
 
9. Adding a constant b to every diagonal element of A 
creates a matrix b+A I  with eigenvalues ic b+  and 
associated eigenvectors iv  .  
 
Proof. 
 
( ) ( )i i i i i i i ib b c b c b+ = + = + = +A I v Av v v v v  
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Key Properties of Eigenvalues and Eigenvectors  
 
10. mA  has m

ic  as an eigenvalue, and iv  as its 
eigenvector.  
 
Proof:  Consider  
 

 
( ) ( ) ( )
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The general case follows by induction. 
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Key Properties of Eigenvalues and Eigenvectors  
 
11.  1−A , if it exists, has 1/ ic  as an eigenvalue, and iv  as 
its eigenvector.  
 
Proof:  
 i i i i ic c= =Av v v  
 1 1

i i i ic− −= =A Av v A v  
 
But the right side of the previous equation implies that 

1 1(1/ ) (1/ )i i i i i ic c c− −= =v A v A v , or 
 ( )1 1/i i ic− =A v v  
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Key Properties of Eigenvalues and Eigenvectors  
 
12. For symmetric A, for distinct eigenvalues ic , jc  with 

associated eigenvectors iv  , jv  we have i j
′v v .  

Proof:  
i i ic=Av v , and j j jc=Av v . So j i i j ic′ ′=v Av v v  and 

i j j i jc′ ′=v Av v v  . But, since a bilinear form ′a Ab is a 
scalar, it is equal to its transpose, and, remembering that 

′=A A ,  i j j i j i′ ′ ′ ′= =v Av v A v v Av .  So placing 
parentheses around Av expressions, we see that 

i j i j i j j j ic c c′ ′ ′= =v v v v v v  . If ic  and jc  are different, this 
implies 0j i′ =v v  . 



- 14 - 

Key Properties of Eigenvalues and Eigenvectors  
 
13. For any real, symmetric A, there exists a V such that 
′ =V AV D, where D is diagonal. Moreover, any real, 

symmetric matrix A can be written as ′VDV , where 
contains the eigenvectors iv  of A in order in its columns, 
and D contains the eigenvalues ic  of A in the ith diagonal 
position. 
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Key Properties of Eigenvalues and Eigenvectors  
 
14.  Suppose that the eigenvectors and eigenvalues of A 
are ordered in the matrices V and D in descending order, 
so that the first element of D is the largest eigenvalue of 
A, and the first column of V is its corresponding 
eigenvector. Define *V  as the first m columns of V, and 

*D  as an m m×  diagonal matrix with the corresponding m 
eigenvalues as diagonal entries. Then  
 * * *′V D V  (6) 
is a matrix of rank m that is the best possible (in the least 
squares sense) rank m approximation of A. 
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Key Properties of Eigenvalues and Eigenvectors  
 
15.  Consider all possible “normalized quadratic forms in 
A,” i.e., 
  
 ( )i i iq ′=x x Ax  (7) 
 
with 1i i′ =x x . The maximum of all quadratic forms is 
achieved with 1i =x v , where 1v  is the eigenvector 
corresponding to the largest eigenvalue of A. The 
minimum is achieved with i m=x v , the eigenvector 
corresponding to the smallest eigenvalue of A. 
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Applications of Eigenvalues and Eigenvectors 
 
1. Principal Components 
 
From property 15 in the preceding section, it follows 
directly that the maximum variance linear composite of a 
set of variables is computed with linear weights equal to 
the first eigenvector of yyΣ , since the variance of this 
linear combination is a quadratic form in yyΣ . 
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2. Matrix Factorization 
 
Diagonal matrices act much more like scalars than most 
matrices do. For example, we can define fractional 
powers of diagonal matrices, as well as positive powers. 
Specifically, if diagonal matrix D has diagonal elements 

id , the matrix xD  has elements x
id  . If x is negative, it is 

assumed xD  is positive definite. With this definition, the 
powers of D behave essentially like scalars. For example, 

1/ 2 1/ 2 =D D D. 
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Example.  
 
Suppose we have  

 
4 0
0 9
⎡ ⎤

= ⎢ ⎥⎣ ⎦
D  

Then 

 1/ 2 2 0
0 3
⎡ ⎤

= ⎢ ⎥⎣ ⎦
D  
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Example.  
Suppose you have a variance-covariance matrix Σ  for 
some statistical population. Assuming Σ  is positive 
semidefinite, then (from Property 13 on page 14 it can be 
written in the form ′ ′= =Σ VDV FF , where 1/ 2=F VD  is 
called a “Gram-factor of F.” 
 
Comment. Gram-factors are not, in general, uniquely 
defined.  
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Example. 
 
Suppose ′=Σ FF  . Then consider any orthogonal matrix 
T, conformable with F, such that ′ ′= =TT T T I. There 
are infinitely many orthogonal matrices of order 2 2×  and 
higher. Then for any such matrix T, we have  
 ′′= = * *Σ FTT F F F  (8) 
where * =F FT. 
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Applications of Gram-Factors 
 
Gram-factors have some significant applications. For 
example, in the field of random number generation, it is 
relatively easy to generate pseudo-random numbers that 
mimic p variables that are independent with zero mean 
and unit variance. But suppose we wish to mimic p 
variables that are not independent, but have variance-
covariance matrix Σ? The following result describes one 
method for doing this. 
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Result.  
 
Given 1p×  random vector x having variance-covariance 
matrix I. Let F be a Gram-factor of ′Σ FF= . Then 
=y Fx will have variance-covariance matrix Σ. 

 
So if we want to create random numbers with a specific 
covariance matrix, we take a vector of independent 
random numbers, and premultiply it by F. 
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Symmetric Powers of a Symmetric Matrix 
 
In certain intermediate and advanced derivations in 
matrix algebra, reference is made to “symmetric powers” 
of a symmetric matrix Σ, in particular the “symmetric 
square root” 1/ 2Σ of Σ, a symmetric matrix which, when 
multiplied by itself, yields Σ.  Recall that 

1/ 2 1/ 2′ ′= =Σ VDV VD D V . Note that 1/ 2 ′VD V  is a 
symmetric square root of Σ, i.e.,   
  

1/ 2 1/ 2′ ′ ′=VD V VD V VDV  
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Orthogonalizing a Set of Variables 
 
Consider a random vector x withVar( ) = ≠x Σ I . What is 

( )1/ 2Var −Σ x ? How might you compute 1/ 2−Σ ? 
 
Suppose a set of variables x have a covariance matrix A, 
and you want to linearly transform them so that they have 
a covariance matrix B. How could you do that if you had 
a computer program that easily gives you the 
eigenvectors and eigenvalues of A and B? (Hint: First 
orthogonalize them. Then transform the orthogonalized 
variables to a covariance matrix you want.) 


