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The Multiple Regression Model

The Multiple Regression Model

The simple linear regression model states that

E(Y |X = x) = β0 + β1x (1)

Var(Y |X = x) = σ2 (2)

In the multiple regression model, we simply add one or more predictors to
the system. For example, if we add a single predictor X2, we get

E (Y |X1 = x1,X2 = x2) = β0 + β1x1 + β2x2 (3)

More generally, if we incorporate the intercept term as a 1 in x, and place
all the β’s (including β0) in a vector we can say that

E(Y |x = x∗) = x∗′β (4)

Var(Y |x = x∗) = σ2 (5)
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The Multiple Regression Model

Challenges in Multiple Regression

Dealing with multiple predictors is considerably more challenging than
dealing with only a single predictor. Some of the problems include:

Choosing the best model. In multiple regression, often several
different sets of variables perform equally well in predicting a
criterion. Which set should you use?

Interactions between variables. In some cases, independent variables
interact, and the regression equation will not be accurate unless this
interaction is taken into account.
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The Multiple Regression Model

Challenges in Multiple Regression

Much greater difficulty visualizing the regression relationships. With
only one independent variable, the regression line can be plotted
neatly in two dimensions. With two predictors, there is a regression
surface instead of a regression line, and with 3 predictors and one
criterion, you run out of dimensions for plotting.

Model interpretation becomes substantially more difficult. The
multiple regression equation changes as each new variable is added to
the model. Since the regression weights for each variable are modified
by the other variables, and hence depend on what is in the model, the
substantive interpretation of the regression equation is problematic.
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Some Key Regression Terminology

Some Key Regression Terminology
Introduction

In Section 3.3 of ALR, Weisberg introduces a number of key ideas and
nomenclature in connection with a regression model of the form

E (Y |X ) = β0 + β1X1 + · · ·+ βpXp (6)
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Some Key Regression Terminology

Some Key Regression Terminology
Predictors vs. Terms

Regression problems start with a collection of potential predictors.

Some of these may be continuous measurements, like the height or
weight of an object.

Some may be discrete but ordered, like a doctor’s rating of overall
health of a patient on a nine-point scale.

Other potential predictors can be categorical, like eye color or an
indicator of whether a particular unit received a treatment.

All these types of potential predictors can be useful in multiple linear
regression.

A key notion is the distinction between predictors and terms in the
regression equation.

In early discussions, these are often synonymous. However, we quickly
learn that they need not be.
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Some Key Regression Terminology

Some Key Regression Terminology
Types of Terms

Many types of terms can be created from a group of predictors. Here are
some examples

The intercept. We can rewrite the mean function on the previous
slide as

E (Y |X ) = β0X0 + β1X1 + · · ·+ βpXp (7)

where X0 is a term that is always equal to one. Mean functions
without an intercept would not have this term included.

Predictors. The simplest type of term is simply one of the predictors.
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Some Key Regression Terminology

Some Key Regression Terminology
Types of Terms

Transformations of predictors. Often we will transform one of the
predictors to create a term. For example, X1 in a previous example
was the logarithm of one of the predictors.

Polynomials. Sometimes, we fit curved functions by including
polynomial terms in the predictor variables. So, for example, X1

might be a predictor, and X2 might be its square.

Interactions and other Combinations of Predictors. Combining several
predictors is often useful. An example of this is using body mass
index, given by height divided by weight squared, in place of both
height and weight, or using a total test score in place of the separate
scores from each of several parts. Products of predictors called
interactions are often included in a mean function along with the
original predictors to allow for joint effects of two or more variables.
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Some Key Regression Terminology

Some Key Regression Terminology
Types of Terms

Dummy Variables and Factors. A categorical predictor with two or
more levels is called a factor. Factors are included in multiple linear
regression using dummy variables, which are typically terms that have
only two values, often zero and one, indicating which category is
present for a particular observation. We will see in ALR, Chapter 6
that a categorical predictor with two categories can be represented by
one dummy variable, while a categorical predictor with many
categories can require several dummy variables.

Comment. A regression with k predictors may contain fewer than k terms
or more than k terms.
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The Kids Data Example

Kids Data

Example (The Kids Data)

As an example consider the following data from the Kleinbaum, Kupper
and Miller text on regression analysis. These data show weight, height,
and age of a random sample of 12 nutritionally deficient children. The
data are available online in the file KidsDataR.txt.
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The Kids Data Example

Kids Data

WGT(y) HGT(x1) AGE(x2)

64 57 8
71 59 10
53 49 6
67 62 11
55 51 8
58 50 7
77 55 10
57 48 9
56 42 10
51 42 6
76 61 12
68 57 9
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The Kids Data Example Visualizing the Data – The Scatterplot Matrix

The Scatterplot Matrix

The scatterplot matrix on the next slide shows that both HGT and AGE

are strongly linearly related to WGT. However, the two potential
predictors are also strongly linearly related to each other.

This is corroborated by the correlation matrix for the three variables.

> kids.data <- read.table("KidsDataR.txt", header = T, sep = ",")

> cor(kids.data)

WGT HGT AGE

WGT 1.0000 0.8143 0.7698

HGT 0.8143 1.0000 0.6138

AGE 0.7698 0.6138 1.0000
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The Kids Data Example Visualizing the Data – The Scatterplot Matrix

The Scatterplot Matrix
> pairs(kids.data)

WGT

45 50 55 60

50
55

60
65

70
75

45
50

55
60

HGT

50 55 60 65 70 75 6 7 8 9 10 11 12

6
7

8
9

10
11

12

AGE
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The Kids Data Example Regression Models for Predicting Weight

Potential Regression Models

The situation here is relatively simple.

We can see that height is the best predictor of weight.

Age is also an excellent predictor, but because it is also correlated
with height, it may not add too much to the prediction equation.

We fit the two models in succession. The first model has only height
as a predictor, while the second adds age.

In the following slides, we’ll perform the standard linear model
analysis, and discuss the results, after which we’ll comment briefly on
the theory underlying the methods.

> attach(kids.data)

> model.1 <- lm(WGT ~ HGT)

> model.2 <- lm(WGT ~ HGT + AGE)

> summary(model.1)

> summary(model.2)
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The Kids Data Example Regression Models for Predicting Weight

Fitting the Models
Call:

lm(formula = WGT ~ HGT)

Residuals:

Min 1Q Median 3Q Max

-5.87 -3.90 -0.44 2.26 11.84

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.190 12.849 0.48 0.6404

HGT 1.072 0.242 4.44 0.0013 **

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.47 on 10 degrees of freedom

Multiple R-squared: 0.663,Adjusted R-squared: 0.629

F-statistic: 19.7 on 1 and 10 DF, p-value: 0.00126

Call:

lm(formula = WGT ~ HGT + AGE)

Residuals:

Min 1Q Median 3Q Max

-6.871 -1.700 0.345 1.464 10.234

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.553 10.945 0.60 0.564

HGT 0.722 0.261 2.77 0.022 *

AGE 2.050 0.937 2.19 0.056 .

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.66 on 9 degrees of freedom

Multiple R-squared: 0.78,Adjusted R-squared: 0.731

F-statistic: 16 on 2 and 9 DF, p-value: 0.0011
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The Kids Data Example Regression Models for Predicting Weight

Comparing the Models with ANOVA

> anova(model.1, model.2)

Analysis of Variance Table

Model 1: WGT ~ HGT

Model 2: WGT ~ HGT + AGE

Res.Df RSS Df Sum of Sq F Pr(>F)

1 10 299

2 9 195 1 104 4.78 0.056 .

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The Kids Data Example Regression Models for Predicting Weight

The Squared Multiple Correlation Coefficient R2

The correlation between the predicted scores and the criterion scores
is called the multiple correlation coefficient,and is almost universally
denoted with the value R.

Curiously, many writers use this notation whether a sample or a
population value is referred to, which creates some problems for some
readers.

We can eliminate this ambiguity by using either ρ2 or R2
pop to signify

the population value.

Since R is always positive, and R2 is the percentage of variance in y
accounted for by the predictors (in the colloquial sense), most
discussions center on R2 rather than R.

When it is necessary for clarity, one can denote the squared multiple
correlation as R2

y |x1x2
to indicate that variates x1 and x2 have been

included in the regression equation.
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The Kids Data Example Regression Models for Predicting Weight

The Partial Correlation Coefficient

The partial correlation coefficient is a measure of the strength of the
linear relationship between two variables after the contribution of
other variables has been “partialled out” or “controlled for” using
linear regression.

We will use the notation ryx |w1,w2,...wp
to stand for the partial

correlation between y and x with the w ’s partialled out.

This correlation is simply the Pearson correlation between the
regression residual εy |w1,w2,...wp

for y with the w ’s as predictors and
the regression residual εx |w1,w2,...wp

of x with the w ’s as predictors.
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The Kids Data Example Regression Models for Predicting Weight

Partial Regression Coefficients

In a similar approach to calculating partial correlation coefficients, we
can also calculate partial regression coefficients.

For example, the partial regression between y and xj with the other
x ’s partialled out is simply the slope of the regression line for
predicting the residual of y with the other x ’s partialled out from that
of xj with the other x ’s partialled out.
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The Kids Data Example Regression Models for Predicting Weight

Bias of the Sample R2

When a population correlation is zero, the sample correlation is hardly
ever zero. As a consequence, the R2 value obtained in an analysis of
sample data is a biased estimate of the population value.

An unbiased estimator is available (Olkin and Pratt, 1958), but
requires very powerful software like Mathematica to compute, and
consequently is not available in standard statistics packages. As a
result, these packages compute an approximate “shrunken” (or
“adjusted”) estimate and report it alongside the uncorrected value.
The adusted estimator when there are k predictors is

R̃2 = 1− (1− R2)
N − 1

N − k − 1
(8)
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Understanding Regression Coefficients

Understanding Regression Coefficients

The β weights in a regression equation can change when a new
predictor term is added.

This is because the regression weights are, in fact, partial regression
weights.

That is, the β weight for predicting y from xj is the regression
coefficient for predicting the residual of y after partialling out all
other predictors from the residual of xj after partialling out all the
other predictors.

Some authors discuss this using Venn diagrams of “overlapping
variance.” (See next slide.)

With modern graphics engines, we can quickly examine the actual
scatterplots of the partial regressions. R will construct them
automatically with the av.plots command.
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Understanding Regression Coefficients

Venn Diagrams
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Understanding Regression Coefficients

Added Variable Plots
> library(car)

> av.plots(model.2)

Warning: ’av.plots’ is deprecated.

Use ’avPlots’ instead.

See help("Deprecated") and help("car-deprecated").
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Statistical Testing in the Fixed Regressor Model Introduction

Introduction

In connection with regression models, we’ve seen two different F tests.

One is the test of significance for the overall regression. This tests the
null hypothesis that, for the current model, R2 = 0 in the population.

The other test we frequently see is a model comparison F , which
tests the hypothesis that the R2 for the more complex model (which
has all the terms of the previous model and some additional ones) is
statistically significantly larger than the R2 for the less complex
model.
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Statistical Testing in the Fixed Regressor Model Partial F -Tests: A General Approach

Partial F -Tests: A General Approach

Actually, the F -tests we’ve seen are a special case of a general
procedure for generating partial F-tests on a nested sequence of
models.

Consider a sequence of J models Mj , j = 1, . . . , J. Suppose Model
Mk includes Model Mj as a special case for all pairs of values of
j < k ≤ J. That is, Model Mj is a special case of Model Mk where
some terms have coefficients of zero. Then Model Mj is nested within
Model Mk for all these values, and we say the set of models is a
nested sequence.

Define tj and tk respectively as the number of terms including the
intercept term in models Mj and Mk .

As a mnemonic device, associate k with complex , because model Mk

is more complex (has more terms) than model Mj .
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Statistical Testing in the Fixed Regressor Model Partial F -Tests: A General Approach

Partial F -Tests: A General Approach

Consider pairs of models in this nested sequence. If we define SSj to
be the sum of squared residuals for less complex model Model Mj ,
SSk the sum of squared residuals for more complex Model Mk , dfj to
be n − tj and dfk = n − tk , then SSk will always be less than or equal
to SSj , because, as the more complex nesting model, model Mk can
always achieve identical fit to model Mj simply by setting estimates
for all its additional parameters to zero. To statistically compare
Model Mj against Model Mk , we compute the partial F -statistic as
follows.

Fdfj−dfk ,dfk =
MScomparison

MSres
=

(SSj − SSk)/(tk − tj)

SSk/dfk
(9)

The statistical null hypothesis is that the two models fit equally well,
that is, the more complex model Mk has no better fit than Mj .
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Statistical Testing in the Fixed Regressor Model Partial F -Tests: Overall Regression

Partial F -Tests: Overall Regression

The overall F test in linear regression is routinely reported in
regression output when testing a model with one or more predictor
terms in addition to an intercept. It tests the hypothesis that
R2
pop = 0, against the alternative that R2

pop > 0.

The overall F test is simply a partial F test comparing a regression
model Mk with tk terms (including an intercept) with a model M1

that has only one intercept term.

Now, a model that has only an intercept term must, in least squares
regression, define the intercept coefficient β0 to be y , the mean of the
y scores, because it is well known that the sample mean is that value
around which the sum of squared deviations is a minimum.

So SSj for the model with only an intercept term becomes SSy , the
sum of squared deviations around the mean for the dependent
variable.
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Statistical Testing in the Fixed Regressor Model Partial F -Tests: Overall Regression

Partial F -Tests: Overall Regression

Since Model Mk has p = tk − 1 predictor terms, and Model Mj has
one (i.e., the intercept), the degrees of freedom for regression become
tk − tj = (p + 1)− 1 = p, and we have, for the test statistic,

Fk,n−p−1 =
(SSy − SSk)/(p)

SSk/(n − p − 1)
=

SSŷ/p

SSe/(n − p − 1)
(10)

Now, in traditional notation, SSk , being the sum of squared errors for
the regression model we are testing, is usually called SSe .

Since SSy = SSŷ + SSe , we can replace SSy − SSk with SSŷ .

Remembering that R2 = SSŷ/SSy , we can show that the F statistic is
also equal to

Fp,n−p−1 =
R2/p

(1− R2)/(n − p − 1)
(11)
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Statistical Testing in the Fixed Regressor Model Partial F -Tests: Adding a Single Term

Partial F -Tests: Adding a Single Term

If we are adding a single term to a model that currently has p
predictors plus an intercept, the model comparison test becomes

F1,n−p−2 =
(SSk − SSj)/(1)

SSk/(n − p − 2)
=

SSŷk − SSŷ j

SSk/(n − p − 2)
(12)

Remembering that R2 = SSŷ/SSy , and that SSy = SSŷ + SSe , we
can show that the F statistic is also equal to

F1,n−p−2 =
R2
k − R2

j

(1− R2
k )/(n − p − 2)

(13)
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Variable Selection in Multiple Regression Introduction

Introduction

When there are only a few potential predictors, or theory dictates a
model, selecting which variables to use as predictors is relatively
straightforward.

When there are many potential predictors, the problem becomes more
complex, although modern computing power has opened up
opportunities for exploration.
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Variable Selection in Multiple Regression Forward Selection

Forward Selection

1 You select a group of independent variables to be examined.

2 The variable with the highest squared correlation with the criterion is
added to the regression equation

3 The partial F statistic for each possible remaining variable is
computed.

4 If the variable with the highest F statistic passes a criterion, it is
added to the regression equation, and R2 is recomputed.

5 Keep going back to step 3, recomputing the partial F statistics until
no variable can be found that passes the criterion for significance.
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Variable Selection in Multiple Regression Backward Elimination

Backward Elimination

1 You start with all the variables you have selected as possible
predictors included in the regression equation.

2 You then compute partial F statistics for each of the variables
remaining in the regression equation.

3 Find the variable with the lowest F .

4 If this F is low enough to be below a criterion you have selected,
remove it from the model, and go back to step 2.

5 Continue until no partial F is found that is sufficiently low.
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Variable Selection in Multiple Regression Stepwise Regression

Stepwise Regression

This works like forward regression except that you examine, at each
stage, the possibility that a variable entered at a previous stage has
now become superfluous because of additional variables now in the
model that were not in the model when this variable was selected.

To check on this, at each step a partial F test for each variable in the
model is made as if it were the variable entered last.

We look at the lowest of these F s and if the lowest one is sufficiently
low, we remove the variable from the model, recompute all the partial
F s, and keep going until we can remove no more variables.
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Variable Selection in Multiple Regression Automatic Single-Term Sequential Testing in R

Automatic Sequential Testing of Single Terms

R will automatically perform a sequence of term-by-term tests on the
terms in your model, in the order they are listed in the model
specification.

Just use the anova command on the single full model.

You can prove for yourself that the order of testing matters, and
significance level for a term’s model comparison test depends on the
terms entered before it.
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Variable Selection in Multiple Regression Automatic Single-Term Sequential Testing in R

Automatic Sequential Testing of Single Terms

For example, for the kids.data, we entered HGT first, then AGE ,
and so our model was

> model.2 <- lm(WGT ~ HGT + AGE)

Here is the report on the sequential tests.

> anova(model.2)

Analysis of Variance Table

Response: WGT

Df Sum Sq Mean Sq F value Pr(>F)

HGT 1 589 589 27.12 0.00056 ***

AGE 1 104 104 4.78 0.05649 .

Residuals 9 195 22

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that HGT , when entered first, has a p-value of .0005582.
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Variable Selection in Multiple Regression Automatic Single-Term Sequential Testing in R

Automatic Sequential Testing of Single Terms

Next, try a model with the same two variables listed in reverse order.

R will test the terms with sequential difference tests, and now the
p-value for HGT will be higher.

In colloquial terms, HGT is “less significant” when entered after AGE ,
because AGE can predict much of the variance predicted by HGT and
so HGT has much less to add after AGE is already in the equation.

> model.2b <- lm(WGT ~ AGE + HGT)

> anova(model.2b)

Analysis of Variance Table

Response: WGT

Df Sum Sq Mean Sq F value Pr(>F)

AGE 1 526 526 24.24 0.00082 ***

HGT 1 166 166 7.66 0.02181 *

Residuals 9 195 22

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Variable Selection in Multiple Regression Automatic Single-Term Sequential Testing in R

Automatic Sequential Testing of Single Terms
> summary(model.2b)

Call:

lm(formula = WGT ~ AGE + HGT)

Residuals:

Min 1Q Median 3Q Max

-6.871 -1.700 0.345 1.464 10.234

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.553 10.945 0.60 0.564

AGE 2.050 0.937 2.19 0.056 .

HGT 0.722 0.261 2.77 0.022 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.66 on 9 degrees of freedom

Multiple R-squared: 0.78,Adjusted R-squared: 0.731

F-statistic: 16 on 2 and 9 DF, p-value: 0.0011
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Variable Selection in Multiple Regression Automatic Single-Term Sequential Testing in R

Automatic Sequential Testing of Single Terms
Notice also that the difference test p-value for the last variable
entered is the same as the p-values reported in the overall output for
the full model, but, in general, the other p-values will not be the
same.

> anova(model.2b)

Analysis of Variance Table

Response: WGT

Df Sum Sq Mean Sq F value Pr(>F)

AGE 1 526 526 24.24 0.00082 ***

HGT 1 166 166 7.66 0.02181 *

Residuals 9 195 22

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(model.2b)

Call:

lm(formula = WGT ~ AGE + HGT)

Residuals:

Min 1Q Median 3Q Max

-6.871 -1.700 0.345 1.464 10.234

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.553 10.945 0.60 0.564

AGE 2.050 0.937 2.19 0.056 .

HGT 0.722 0.261 2.77 0.022 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.66 on 9 degrees of freedom

Multiple R-squared: 0.78,Adjusted R-squared: 0.731

F-statistic: 16 on 2 and 9 DF, p-value: 0.0011
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Variable Selection in R Problems with Statistical Testing in the Variable Selection Context

Problems with Statistical Testing

Frequently multiple regressions are at least partially exploratory in
nature.

You gather data on a large number of predictors, and try to build a
model for explaining (or predicting) y from a number of x ’s.

A key aspect of this is choosing which x ’s to retain.

A key problem is that, especially when n is small and the number of
x ’s is large, there will be a number of spuriously large correlations
between the criterion and the x ’s.

You can capitalize on chance, as it were, and build a regression
equation using variables that have high correlations with the criterion,
but this equation will not generalize to any new situation.
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Variable Selection in R Problems with Statistical Testing in the Variable Selection Context

Problems with Statistical Testing

There are a number of statistical tests available in multiple regression,
and they are printed routinely by statistical software such as SPSS,
SAS, Statistica, SPLUS, and R.

It is important to realize that these test do not in general correct for
post hoc selection.

So, for example, if you have 90 potential predictors that all actually
correlate zero with the criterion, you can choose the predictor with
the highest absolute correlation with the criterion in your current
sample, and invariably obtain a “significant” result.

Strangely, this fact is seldom brought to the forefront in textbook
chapters on multiple regression.

Consequently, people actually believe that the F statistics and
associated probability values somehow determine whether the
regression equation is significant in the sense most relatively naive
users would expect.
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Variable Selection in R Problems with Statistical Testing in the Variable Selection Context

Demonstration: Forward Regression with Random
UncorrelatedPredictors

We can demonstrate how Forward Regression or Stepwise Regression
can produce wrong results.

We begin by creating a list of names for our variables.

> names <- c("Y", paste("X", 1:90, sep = ""))

Then we create a data matrix of order 50× 91 containing totally
independent normal random numbers.

> set.seed(12345) #so we get the same data

> data <- matrix(rnorm(50 * 91), 50, 91)

Then I add the column names to the data and turn the data matrix
into a dataframe.

> colnames(data) <- names

> test.data <- data.frame(data)

> attach(test.data)

Note that these data simulate samples from a population where
R2 = 0, as all the variables are uncorrelated.
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Variable Selection in R Problems with Statistical Testing in the Variable Selection Context

Demonstration: Forward Regression with Random
UncorrelatedPredictors

We start the forward selection procedure (which is fully automated by
SPSS) by looking for the X predictor that correlates most highly with
the criterion variable Y . We can examine all the predictor-criterion
correlations, sorted, using the following command, which grabs the
first column and sorts its entries, then restrict the output to the
largest 3 values:

> sort(cor(test.data)[, 1])[88:91]

X48 X77 X53 Y

0.2568 0.3085 0.3876 1.0000

Since we have been privileged to examine all the data and select the
best predictor, the probability model on which the F -test for overall
regression is based is no longer valid. We can see that X 53 has a
correlation of .388, despite the fact that the population correlation is
zero. Here is the evaluation of model fit:

> summary(lm(Y ~ X53))

Call:

lm(formula = Y ~ X53)

Residuals:

Min 1Q Median 3Q Max

-2.171 -0.598 0.106 0.601 1.998

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.189 0.144 1.31 0.1979

X53 0.448 0.154 2.91 0.0054 **

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.02 on 48 degrees of freedom

Multiple R-squared: 0.15,Adjusted R-squared: 0.133

F-statistic: 8.49 on 1 and 48 DF, p-value: 0.00541

The regression is “significant” beyond the .01 level.
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Demonstration: Forward Regression with Random
UncorrelatedPredictors

The next largest correlation is X77. Adding that to the equation
produces a “significant” improvement, and an R2 value of 0.26.

> summary(lm(Y ~ X53 + X77))

Call:

lm(formula = Y ~ X53 + X77)

Residuals:

Min 1Q Median 3Q Max

-2.314 -0.626 0.100 0.614 1.788

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.211 0.136 1.55 0.1284

X53 0.471 0.145 3.24 0.0022 **

X77 0.363 0.137 2.65 0.0110 *

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.963 on 47 degrees of freedom

Multiple R-squared: 0.261,Adjusted R-squared: 0.229

F-statistic: 8.28 on 2 and 47 DF, p-value: 0.00083

It is precisely because F tests perform so poorly under these
conditions that alternative methods have been sought. Although R
implements stepwise procedures in its step library, it does not use the
F -statistic, but rather employs information-based criteria such as the
AIC.

In its leaps procedure, R implements an “all-possible-subsets” search
for the best model.

We shall examine the performance of some of these selection
procedures in Homework 5.
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The Active Terms

One way of conceptualizing variable selection is to parse the available
terms in the analysis into active and inactive groups.

A simple notation for describing this is as follows:

Given a response Y and a set of terms X , the idealized goal of
variable selection is to divide X into two pieces, i.e., X = (XA,XI),
where XA is the set of active terms, and XI is the set of inactive
terms not needed to specify the mean function.

E(Y |XA,XI) and E(Y |XA) would give the same results.
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The Active Terms

We could write
E(Y |X = x) = β′AxA + β′IxI (14)

If we have specified the model correctly, then to a close
approximation, we should see β′I = 0.
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Information Criteria

Suppose that we have a candidate subset XC , and that the selected
subset is actually equal to the entire set of active terms XA.

Then, of course (depending on sample size) the fit of the mean
function including only XC should be similar to the fit of the mean
function including all the non-active terms.

If XC misses important terms, the residual sum of squares should be
increased.
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Information Criteria
The Akaike Information Criterion (AIC)

Criteria for comparing various candidate subsets are based on the lack
of fit of a model in this case, as assessed by the residual sum of
squares (RSS), and its complexity, assessed by the number of terms in
the model.

Ignoring constants that are the same for every candidate subset, the
AIC, or Akaike Information Criterion, is

AICC = n log(RSSC/n) + 2pC (15)

According to the Akaike criterion, the model with the smallest AIC is
to be preferred.
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Information Criteria
The Schwarz Bayesian Criterion

This criterion is

BICC = n log(RSSC/n) + pC log(n) (16)
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Information Criteria

Mallows Cp criterion is defined as

CpC =
RSSC
σ̂2

+ 2pC − n (17)

where σ̂2 is obtained from the fit of the model with all terms included.

Note that, for a fixed number of parameters, all three criteria are
monotonic in RSS .
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Estimated Standard Errors

Along with other statistical output, statistical software typically can
provide a number of “standard errors.”

Since the estimates associated with these standard errors are
asymptotically normally distributed, the standard errors can be used
to construct Wald Tests and/or confidence intervals for the
hypothesis that a parameter is zero in the population.

Typically, software does not provide a confidence interval for R2 itself,
or even a standard error.

The calculation of an exact confidence interval for R2 is possible, and
Rachel Fouladi and I provided the first computer program to do that,
in 1992.
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Standard Errors for Predicted and Fitted Values

Recall that there are two related but distinct goals in regression
analysis. One goal is estimation: from the data at hand, we wish to
determine an optimal predictor set and accurately estimate β weights
and R2

pop.

Another goal is prediction, and one variant of that involves estimation
of β̂ followed by the use of that β̂ with a new set of observations x∗.
We would like to be able to gauge how accurate our estimate of the
(not yet observed) y∗ will be. Following Weisberg, we will refer to
those predictions as ỹ∗.
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Standard Errors for Predicted and Fitted Values

In keeping with the above considerations, there are two distinctly
different standard errors that we can compute in connection with the
regression line.

One standard error, sefit, deals with the estimation situation where
we would like to compute a set of standard errors for the (population)
fitted values on the regression line. This estimation of the conditional
means does not require a new x∗.

Another standard error, sepred, deals with the prediction situation
where we have a new set of predictor values x∗, and we wish to
compute the standard error for the predicted value of y, i.e., ỹ∗,
computed from these values.
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Standard Errors for Predicted and Fitted Values
Key Formulas

Section 3.6 of ALR gives the following:

PROBLEMS 65

3.6 PREDICTIONS AND FITTED VALUES

Suppose we have observed, or will in the future observe, a new case with its own
set of predictors that result in a vector of terms x∗. We would like to predict the
value of the response given x∗. In exactly the same way as was done in simple
regression, the point prediction is ỹ∗ = x′∗β̂, and the standard error of prediction,
sepred(ỹ∗|x∗), using Appendix A.8, is

sepred(ỹ∗|x∗) = σ̂

√
1 + x′∗(X′X)−1x∗ (3.23)

Similarly, the estimated average of all possible units with a value x for the terms is
given by the estimated mean function at x, Ê(Y |X = x) = ŷ = x′β̂ with standard
error given by

sefit(ŷ|x) = σ̂
√

x′(X′X)−1x (3.24)

Virtually all software packages will give the user access to the fitted values, but
getting the standard error of prediction and of the fitted value may be harder. If a
program produces sefit but not sepred, the latter can be computed from the former
from the result

sepred(ỹ∗|x∗) =
√

σ̂ 2 + sefit(ỹ∗|x∗)2

PROBLEMS

3.1. Berkeley Guidance Study The Berkeley Guidance Study enrolled children
born in Berkeley, California, between January 1928 and June 1929, and then
measured them periodically until age eighteen (Tuddenham and Snyder, 1954).
The data we use is described in Table 3.6, and the data is given in the data
files BGSgirls.txt for girls only, BGSboys.txt for boys only, and
BGSall.txt for boys and girls combined. For this example, use only the
data on the girls.

3.1.1. For the girls only, draw the scatterplot matrix of all the age two vari-
ables, all the age nine variables and Soma. Write a summary of the
information in this scatterplot matrix. Also obtain the matrix of sample
correlations between the height variables.

3.1.2. Starting with the mean function E(Soma|WT9) = β0 + β1WT9, use
added-variable plots to explore adding LG9 to get the mean function
E(Soma|WT9, LG9) = β0 + β1WT9 + β2LG9. In particular, obtain the
four plots equivalent to Figure 3.1, and summarize the information in
the plots.

3.1.3. Fit the multiple linear regression model with mean function

E(Soma|X) = β0 + β1HT2 + β2WT2 + β3HT9 + β4WT9 + β5ST9
(3.25)
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