Psychology 312 Spring, 2015 Tentative Schedule of Activities

Date	Topic(s)	Assigned Activities
Wed	Course Introduction	Install the latest version of <i>R</i> on your computer.
01/07	Administrative Details	
	Overview of Multivariate Methods	Install the latest version of RStudio on your
		computer.
	Mathematical Prerequisites	
		When you receive an email from Piazza inviting you
	Raw Scores, Deviation Scores, Z-scores	to join, please immediately join Piazza.
	The Algebra of Variances and Covariances	
	Linear Transformations	Go to http://www.overleaf.com and register for the
	Linear Combinations	free account version of WriteLaTex.
	Mean of a Linear Combination	
	Variance of a Linear Combination	Read:
	Covariance of Two LCs	
		Harlow, Chapters 1–2 [[LH01.pdf, LH02.pdf]]
	Introduction to R	Rencher, Chapter 1 [[AR01.pdf]]
	Basic Computations and Linear	Handout Chapter 3, The Scalar Algebra of Variances
	Transformation in R	and Covariances, [[Covariances.pdf]]
	Linear Combination in R	p. 31–51
		Handout, Chapter 4, Introduction to Matrix Algebra
	Introduction to Matrix Algebra	p. 53–60 [[Matrix.pdf]]
	Types of Matrices	
	Matrix Addition	
	Transposition	Homework Assignment 1 Due 01/21
	Scalar Multiples	
	Scalar Products	
	Matrix Multiplication	
	ľ	
Wed	Introduction to Matrix Algebra (ctd)	Read:
01/14	C C <i>Y</i>	
	Linear Combinations	Handout Chapter 4, Introduction to Matrix Algebra
	Sets of Linear Combinations	p. 57–75
	Extracting Rows and Columns	1
	č	<i>R-intro</i> Handout, p. 1–22
	Inverse of a Square Matrix	
	Matrix Algebra and Matrix Manipulation in R	
	U U U U U U U U U U U U U U U U U U U	
	Matrix Algebra of Sample Statistics	
	Means	
	Deviation Scores	
	Sums of Squares	
	Sums of Cross-Products	

Wed 01/21	Matrix Algebra of Sample Statistics (ctd) Properties of the P and Q deviation score projector Variances and Covariances Covariance Matrices Diagonal Matrices and their Special Properties Roots and Powers of a Diagonal Matrix Correlation Matrices Eigenvalues and Eigenvectors Random Vectors and Random Matrices Matrix Expected Value Algebra Matrix Covariance Algebra for Sets of Linear Combinations Eigenvalues and Eigenvectors	 Homework Assignment 2. Due Wednesday 02/04. Use R to do the computations for the last question. Download <i>R Utility Functions</i> and documentation from the R Code and Support Materials section of the website. Read: Handout Chapter 4, Introduction to Matrix Algebra p. 75-84 Rencher, Chapter 02 (Optional).
Wed 01/28	Random Vectors and Random Matrices Matrix Expected Value Algebra Matrix Covariance Algebra for Sets of Linear Combinations Eigenvalues and Eigenvectors Eckart-Young decomposition of a symmetric Matrix Symmetric Powers of a Symmetric Matrix Matrix Factorization and Random Number Generation Defining our own matrix functions Creating Data with Exact Attributes Creating Samples from a Population with Known Attributes	Read: Homework Assignment 3, Due Wednesday 02/11

Wed	Linear Regression Analysis	Read:
	 Basics of Least Squares Linear Regression and Multiple Regression Algebra Introduction to the Geometry of Statistics Projection Operators Partial Covariance and Correlation Algebra Factor Analysis and Explanation of Variables in the "Partial Correlation Sense" 	Handout Chapter 5, The Algebra of Linear Regression and Partial Correlation. Gelman & Hill, Ch. 3 Gelman & Hill, Ch. 4 Weisberg, Ch. 1 Weisberg, Ch. 2 Wonnacott Ch 14 Wickens Ch 1–4 (Optional) Steiger(1994), pp. 201–207
Wed 02/11	The Determinant as Generalized Variance More Regression Algebra Multivariate Regression Systems with Latent Variables – Regression Component Analysis Principal Components as a Regression Component System. The "Fundamental Theorem of Factor Analysis" Multivariate Models as Data Constraints Spearman's Tetrad Criterion	Handout, Exploratory Factor Analysis with R Handout, Algebra of Factor Analysis

Wed 02/18	Practical Factor Analysis	Homework Assignment 4, Due Wednesday 02/25
	Exploratory Factor Analysis with R and FactoMineR	
Wed 02/25	The 3 Indeterminacies of Factor Analysis	Homework Assignment 5 Due March 11
	Simple Structure and Machine Rotation	Handout, Bifactor Rotation
	Oblique Transformation	Handout, Advanced Exploratory Factor Analysis Handout, Confirmatory Factor Analysis with R
	Bi-Factor Solutions – when "simple structure" fails	Handout, Advanced Confirmatory Factor Analysis with R
	Maximum Likelihood Estimation and Nonlinear	
	Optimization in Factor Analysis	Handout, Path Diagrams
	Confirmatory Factor Analysis with R	
	Path Diagrams and their Characteristics	
	Confirmatory Factor Analysis as a Path Diagram	
	Strict Confirmatory FA	
	Jöreskog's "Exploratory-Confirmatory" Approach	
	Advanced Routines for Quick Confirmatory Factor Analysis using the sem package	
Week 9		
,, con y	Spring Break – No Classes	

Week 10		
Week 10 Wed 03/11	Structural Equation Modeling Algebraic Models The LISREL Model The RAM Model The Bentler-Weeks Model Structural Equation Modeling – The Wheaton Model Example	Jöreskog(1978), section on Confirmatory Factor Analysis, p. 454–457 Fox (2006) Handout, <i>Measures of Fit</i>
Week 11		
Wed	The RAM Model	MacCallum Browne Sugawara (1996)
wed 03/18	Practical Problems in CFA and Structural Equation Modeling Power Calculation Precision of Estimation Sample Size Estimation Handling iterative failure Canonical Correlation – Two-way simultaneous multiple regression	MacCallum, Browne, Sugawara (1996). Rencher, Chapter 11, <i>Canonical Correlation</i> Homework Assignment 6, Due April 01
Week 12		
Wed 03/25	Bias in Canonical Correlation – a demonstration Discriminant Analysis Stepwise Discriminant Analysis	Rencher, Chapter 8, Discriminant Analysis
Week 13		
Wed 04/01	Factorial ANOVA and the General Linear Model MANOVA	Homework Assignment 7, Due April 15 Reading TBA
Week 14	2	
Wed 04/08	Hotelling's T^2	