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Introduction

Introduction

When transformation won’t linearize your model, the function is complicated, and you
don’t have deep theoretical predictions about the nature of the X -Y regression
relationship, but you do want to be able to characterize it, at least to the extent of
predicting new values, you may want to consider a generalized additive model (GAM).
A generalized additive model represents E (Y |X = x) as a weight sum of smooth
functions of x .
We’ll briefly discuss two examples, polynomial regression and spline regression.
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

Nonlinear relationships between a predictor and response can sometimes be difficult to fit
with a single parameter function or a polynomial of “reasonable” degree, say, between 2
and 5.
For example, you are already familiar with the UN data relating per capita GDP with
infant mortality rates per 1000. We’ve seen before that these data are difficult to analyze
in their original form, but can be linearized by log-transforming both the predictor and
response.
Here are the original data from car.
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

> data(UN)

> attach(UN)

> plot(gdp,infant.mortality)
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

> plot(log(gdp),log(infant.mortality))
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression
Here we fit the log-log model, then back-transform it to the original metric and plot the curve.

> loglog.fit <- lm(I(log(infant.mortality)) ~ I(log(gdp)))

> plot(gdp,infant.mortality)

> curve(exp(coef(loglog.fit)[1] + coef(loglog.fit)[2]*log(x)),5,43000,add=T,col="red")
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression
This works quite a bit better than, say, fitting a polynomial of order 5, because polynomials
can be very unstable at their boundaries!

> poly5.fit <- lm(infant.mortality ~ gdp + I(gdp^2)

+ + I(gdp^3) + I(gdp^4) + I(gdp^5))

> plot(gdp,infant.mortality)

> b0 <- coef(poly5.fit)[1]

> b1 <- coef(poly5.fit)[2]

> b2 <- coef(poly5.fit)[3]

> b3 <- coef(poly5.fit)[4]

> b4 <- coef(poly5.fit)[5]

> b5 <- coef(poly5.fit)[6]

> curve(b0+b1*x + b2*x^2 + b3*x^3 + b4*x^4 +

+ b5 * x^5, 4,43000,add=T,col="red")
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

Another approach is to fit more than one straight line.
Our motivation to do this with the present data is substantive. We can see that there are
many countries jammed up against the left of the plot with gdp values below 2000, and
there is a steep decline of infant mortality as a function of gdp within that area of the
plot. Once gdp exceeds around 2000, the decline is much less steep.
So, for example, we could fit one straight line to the data where gdp is less than or equal
to 2000, and another for the data points where gdp exceeds 2000.
We already know how to do this!
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

Define an indicator variable, and then use it as a predictor, but also allow an interaction
between this dummy predictor and gdp

We can express the model as

E (child .mortality |gdp) = β0 + β1gdp + β2(gdp > 2000)+

+β3gdp(gdp > 2000)+

The dummy variable (gdp > 2000)+ takes on the value 1 when gdp > 2000, zero
otherwise. You can see that for observations where gdp exceeds 2000, the model becomes

E (child .mortality |gdp) = (β0 + β2) + (β1 + β3)gdp (1)

What is the model when gdp ≤ 2000? (C.P.)
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Piecewise Regression Revisited Piecewise Linear Regression

Piecewise Regression

The point of separation in the piecewise regression system is called a knot.
We can have more than one knot.
We can select the knot a priori (say, at the median value of the predictor), or, as in this
case, we can allow the data to dictate.
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Piecewise Regression Revisited Linear Spline Regression

Linear Spline Regression

This system is straightforward to implement in R.
However, the lines need not join at the knots.
To force the lines to join, eliminate several intercept-difference parameters and define the
system with k knots a1 . . . ak as follows:

E (Y |X ) = β0 + β1X + β2(X − a1)+ + β3(X − a2)+

+ . . .+ βk−1(X − ak)+ (2)

We call this linear spline regression.
The terms of the form (u)+ have the value u if u is positive, and 0 otherwise.
Let’s see how this is done in R with a knot at 1750. Notice that the second line segment
starts at a height equal to that of the first line at X = 1750.

James H. Steiger (Vanderbilt University) An Introduction to Splines 12 / 23



Piecewise Regression Revisited Linear Spline Regression

Linear Spline Regression

> fit.jpw <- lm(infant.mortality ~1 + gdp + I((gdp-1750)*(gdp>1750)))

> summary(fit.jpw)

Call:

lm(formula = infant.mortality ~ 1 + gdp + I((gdp - 1750) * (gdp >

1750)))

Residuals:

Min 1Q Median 3Q Max

-69.045 -11.923 -2.760 8.761 127.998

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.152745 4.061900 22.69 <2e-16 ***

gdp -0.037298 0.003347 -11.14 <2e-16 ***

I((gdp - 1750) * (gdp > 1750)) 0.036496 0.003474 10.51 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.5 on 190 degrees of freedom

(14 observations deleted due to missingness)

Multiple R-squared: 0.5325, Adjusted R-squared: 0.5276

F-statistic: 108.2 on 2 and 190 DF, p-value: < 2.2e-16
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Piecewise Regression Revisited Linear Spline Regression

Linear Spline Regression

> b.0 <- coef(fit.jpw)[1]

> b.1 <- coef(fit.jpw)[2]

> b.2 <- coef(fit.jpw)[3]

> x.0 <- seq(0,1750,1)

> x.1 <- seq(1750,42000,1)

> y.0 <- b.0 + b.1 * x.0

> y.1 <- (b.0 + b.1 * 1750 + (b.1 + b.2)* x.1)

> plot(gdp,infant.mortality)

> lines(x.0,y.0, col="red")

> lines(x.1,y.1, col="blue")
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Piecewise Regression Revisited Linear Spline Regression

Linear Spline Regression

We didn’t do that well with only two knots.
We could probably do much better with 3 or 4.
Another alternative is to fit different cubic functions that are connected at the knots.
We discuss cubic spline regression in the next section.
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Cubic Spline Regression

Cubic Spline Regression

Cubic spline regression fits cubic functions that are joined at a series of k knots.

These functions will look really smooth if they have the same first and second derivatives
at the knots.

Such a system follows the form

E (Y |X ) = β0 + β1X + β2X
2 + β3X

3 +

β4(X − a1)3+ + β5(X − a2)3+ + . . .+

βk+3(X − ak)3+ (3)
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Cubic Spline Regression

Restricted Cubic Spline Regression

With enough knots, cubic spline regression can work very well.

However, like with polynomial regression, the system sometimes works very poorly at the
outer ranges of X .

A solution to this problem is to restrict the outer line segments at the lower and upper
range of X to be straight lines.
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Cubic Spline Regression

Restricted Cubic Spline Regression

To force linearity when X < a1, the X 2 and X 3 terms must be eliminated.
To force linearity when X > ak , the last two βs are redundant, i.e., are just combinations
of the other βs.
Such a system with k knots a1 . . . ak follows the form

E (Y |X ) = β0 + β1X1 + β2X2 + . . .+ βk−1Xk−1 (4)

where X1 = X , and, for j = 1, . . . , k − 2,

Xj+1 = (X − aj)
3
+(X − ak−1)3+(ak − aj)/(ak − ak−1)

+(X − ak)3+(ak−1 − aj)/(ak − ak−1) (5)
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Cubic Spline Regression

Restricted Cubic Spline Regression

Here are some artificial data:

> set.seed(12345)

> x <- runif(50, 0, 10)

> y <- cos(x + 1) + x/5 + 0.5*rnorm(50)

> plot(x,y)
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In the following figures from Fox’s Applied Regression text, we see a progression of fits to
these data.

James H. Steiger (Vanderbilt University) An Introduction to Splines 19 / 23



Cubic Spline Regression

Restricted Cubic Spline Regression
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Cubic Spline Regression

Restricted Cubic Spline Regression
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Cubic Spline Regression

Restricted Cubic Spline Regression

The spline-fitting process can be automated by R to a large extent.
In the code below, we select an optimal smooth and apply it to some artificial data.
On the next slide, we show the true function in red, the data (perturbed by noise), and
the result of the spline fit.
In this case, in which we have 100 equally spaced data points, the results are excellent.

> library(pspline)

> n <- 100

> x <- (1:n)/n

> true <- ((exp(1.2*x)+1.5*sin(7*x))-1)/3

> noise <- rnorm(n, 0, 0.15)

> y <- true + noise

> library(pspline)

> n <- 100

> x <- (1:n)/n

> true <- ((exp(1.2*x)+1.5*sin(7*x))-1)/3

> noise <- rnorm(n, 0, 0.15)

> y <- true + noise

> fit <- smooth.Pspline(x, y, method=3)

> plot(x,y)

> lines(x,fit$ysmth,type='l',col="red")
> fit <- smooth.Pspline(x, y, method=3)

> plot(x,y)

> lines(x,fit$ysmth,type='l',add=TRUE)
> curve(((exp(1.2*x)+1.5*sin(7*x))-1)/3,0,

+ 1,add=TRUE,col="red")
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Cubic Spline Regression

Restricted Cubic Spline Regression
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