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Introduction

Introduction

You’ve gathered your data on X and Y , plotted them, and although the points seem to
follow a functional rule, it is questionable whether the functional rule is linear.
Suppose for now that the relationship appears to be monotonic but nonlinear.
Some advantages would accrue if we could monotonically transform X (and possibly Y )
so that the graph has been “straightened out” to be linear.

1 Ordinary linear regression can be used to derive an equation representing the relationship
between X and Y .

2 Departures from linearity are easy to spot.
3 The transformation to linearity may also move the data in the direction of constant variances

around the regression line.
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Introduction

Introduction

We know that, if the data are nonlinear, we will need to apply a nonlinear transformation
to X and/or Y in order to straighten out the plot.
But how should we proceed?
Some of the most famous statisticians of the 20th century thought a lot about this
problem, and we’ll review some of their key findings in the next sections.
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Power Transforms

Power Transforms

Power transforms can be very effective when the relationship between X and Y is “simple
monotone,” that is, either strictly increasing or strictly decreasing with no inflection point.
If there is an “inflection point” at which the second derivative (direction of change of
slope) changes sign, then a power transform alone will not achieve linearity.
In that case, we may need to switch to a more complex model, as discussed in other
lecture modules.
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Power Transforms

Power Transforms
Simple Monotonic

A power transformation will achieve linearity for these data.
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Power Transforms

Power Transforms
Non-Monotonic

The relationship is not monotonic. A power transformation will be unsuccessful transforming
these data to linearity.
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Power Transforms

Power Transforms
Monotonic with an Inflection Point

Here the relationship is monotonic, but has an inflection point, and a power transform will not
achieve linearity.
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Power Transforms

Power Transforms

We seek a transformation so if X is the transformed predictor and Y is the transformed
response, then the mean function in the transformed scale is

E (Y |X = x) ≈ β0 + β1x (1)

We use “≈” rather than “=” to recognize that whatever model we end up employing is
almost certainly not literally true, but is only an approximation.
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Power Transforms

Power Transforms

A transformation family is a collection of transformations that are indexed by one or a few
parameters that the analyst can select conveniently.
The family that is used most often is called the power family.
For a strictly positive variable U the power family is of the form

ψ(U, λ) =

{
log(U) for λ = 0

Uλ otherwise
(2)

If U is not strictly positive, then the transformation can be applied to U + c , where c is a
constant so that the minimum value of U + c is a positive number, perhaps 1.
Some statisticians refer to log(U + c) as “started logs,” and (U + c)λ as “started powers.”

James H. Steiger (Vanderbilt University) Transforming to Linearity 10 / 53



The Box-Cox Transform

The Box-Cox Transform

In applying the power simple power transform, there is a technical problem: there is a
discontinuity at λ = 0.
The scaled power transformation family, discussed by Box and Cox (1964), and often
referred to as the Box-Cox transformation, is defined as

ψS(X , λ) =

{
(Xλ − 1)/λ if λ 6= 0

log(X ) if λ = 0
(3)

This function family is actually continuous in λ, since limλ→0 ψS(X , λ) = loge(X ).
Also, scaled power transformations preserve the direction of association, in the sense that
if X and Y are positively related, then ψS(X , λ) and Y are positively associated for all
values of λ. (With basic power transformations, the direction of association changes when
λ < 0.)
When transforming X , we shall use the Box-Cox transformation.
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The Box-Cox Transform

The Box-Cox Transform

When transforming Y and trying to find the “best” value of λ in the Box-Cox
transformation, there is an additional technical problem.
After transforming the Y variable, the scores are no longer in their original metric.
Consequently the residual sum of squares no longer has the same statistical meaning as it
did prior to transformation.
As a result, one cannot find the best λ by comparing the residual variance (or residual
sum of squares) for several competing values of λ.
A solution to this problem is straightforward: Use the normalized Box-Cox transformation
discussed on the next slide when transforming the dependent variable Y .
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The Normalized Box-Cox Transform

The Normalized Box-Cox Transform

The normalized Box-Cox family ψM(Y , λy ) for a strictly positive variable Y is a simple
modification of the Box-Cox power transformation family, in which an additional
multiplier based on the geometric mean is employed to simplify the derivation of a
maximum-likelihood method:

ψM(Y , λy ) =

{
gm(Y )1−λy × (Y λy − 1)/λ for λy 6= 0

gm(Y )× log y for λy = 0

where the geometric mean gm is defined as

gm(Y ) = exp((
∑
i

log yi )/N)

.
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

The power transformation bends the scatter plot in a predictable way.
Mosteller and Tukey(1977), in their classic text Data Analysis and Regression, spoke of
going up or down a “ladder of re-expression” as λ is increased or decreased.
Mosteller and Tukey quickly add a serious caution: When a nonlinear transformation is
performed strictly on an empirical basis, extrapolation beyond the range of the data is
extremely dangerous. On the other hand, if guided by strong theory, such extrapolation
might be reasonable.
To keep computational effort reasonable, Mosteller and Tukey suggested powers λ on the
ladder of values −3,−2,−1,−1/2,#, 1/2, 1, 2, 3, with # referring to a log
transformation. On page 84, they present a graphical representation of their “bulging
rule.”
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

The Mosteller-Tukey Bulging Rule

Use p > 1, q > 1

Use p > 1, q < 1

Use p < 1, q > 1

Use p < 1, q < 1

Figure 1: The Mosteller-Tukey Bulging Rule. After adding a constant toX and Y if necessary
so that both variables are positive, apply a power transformation Xp and/or Y q. Choose p
and q according to which quadrant of the above diagram looks most like the original plot of
X and Y .

1
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

Here is an artifical data set that demonstrates substantial nonlinearity.
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

Which transformations should we consider?
The plot looks very much like the lower right quadrant of the Bulging Rule diagram,
which suggests that X should be raised to a power greater than 1, and/or Y to a power
less than 1.
But which variables whould we transform?
Looking at the residual plot may help.
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

Notice that the residuals grow larger from left to right in the plot.
Will transforming X alone help this? No, it will not.
We will either have to transform Y or try some other method to deal with a nonconstant
residual variance that violates the assumption of the simple linear regression model.
While we’re at it, let’s use the scatterplotMatrix function to look at the individual
distributions of X and Y along with their scatterplot.
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Choosing a Transform

Choosing a Transform
The Mosteller-Tukey Bulging Rule

> scatterplotMatrix(cbind(x,y))
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

X is already close to normal in shape.
A nonlinear power transform will create non-normality.
Let’s try transforming Y , using a visual transforming application I wrote in R.
You’ll need to run this in RStudio with the manipulate library loaded.
Start up RStudio, go to the R console, and type

> source("http://www.statpower.net/R2101/TransformDemo.R")

You should see the data open in a manipulate window with sliders, as shown on the next
slide.
Note: If the Manipulate window with its controls is not open, click on the cog icon in the
upper left of the plot.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Notice that λx and λy are both initialized at 1, so you begin by viewing the X and Y
variables in their original, untransformed form.
There are two checkboxes at the top-left of the plot for display the OLS line of best linear
fit and the Lowess smoothed line, which of course will be curvilinear.
Click on both checkboxes to display the fit lines.
The disparity between the linear fit line and the Lowess line is one way of demonstrating
the essential nonlinearity of the relationship.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Another way to examine nonlinearity visually is to display a plot of residuals versus X .
Click on the Show Residual Plot checkbox to display a plot of the residuals.
You can clearly see from the curved shape of the plot that linearity is not satisfied.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Uncheck the the Show Residual Plot checkbox to show the X -Y scatterplot again.
Now we are going to transform Y .
Using the mouse, drag the lambda-y slider to the left until the value changes from 1.0 to
about 0.7.
Release the slider, and you will note that the relationship between X and the transformed
Y has become substantially more linear.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Our transformation appears to be moving in the correct direction.
To get finer control of the transformation process, use the left and right arrow keys on
your keyboard.
Tap the left arrow key several times to reduce λy to 0.50. Note how the plot changes and
becomes increasingly linear.
We are getting close to an optimal Box-Cox transform, as evidenced by the fact that the
Lowess and linear lines are now very close together.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

In the final stages, we’ll use the estimated residual variance to decide when we have
optimized our transformation.
Click on the Show Statistics checkbox in order to display current values of σ̂2, λx , and λy
in the plot subtitle.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

The current residual variance is around 307.
Start tapping on the left arrow key again, watching the value of σ̂2 carefully.
You will see the plot become increasingly linear, to the point where the Lowess and OLS
lines are virtually identical.
You should also see the value of σ̂2 get increasingly smaller until it bottoms out at
λy = 0.32.
Changing λy to be less than 0.32 causes the value of σ̂2 to start increasing, and the plot
to become less linear.
Evidently, λy = 0.32 gives the optimal Box-Cox transformation.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Click on the Show Residual Plot checkbox again.
Note how the residuals are now essentially randomly distributed around 0.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

Our estimate of the best transformation for Y is λy = 0.33, essentially the cube root of
Y , which suggests that the original Y was a cubic function of X .
An approximate likelihood-based confidence interval can be established for this estimate,
using the boxCox function in the verb—car— library.
After approximating the value of λ, one zooms in on the graph to establish the confidence
limits, as shown on the next slide.
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

> boxCox(y~x, lambda=seq(.1,.5,.01))
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Manually Transforming Y to Linearity

Manually Transforming Y to Linearity

The confidence limits appear to run from .28 to .39.
By setting plotit=FALSE, one may obtain a table of values for the log likelihood and
establish the confidence interval to a higher level of precision.
However, two decimal places are usually sufficient.
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The Log Rule and the Range Rule

The Log Rule and the Range Rule

Weisberg cites two rules that would predict the usefulness of the log transformation:

The Log Rule. If the values of a variable range over more than one order of magnitude
and the variable is strictly positive, then replacing the variable by its logarithm is likely to
be helpful.
The Range Rule. If the range of a variable is considerably less than one order of
magnitude, then any transformation of that variable is unlikely to be helpful.
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The Log Rule and the Range Rule

The Log Rule and the Range Rule

The next slide contains a plot of body weight (BodyWt) in kilograms and brain weight
(BrainWt) in grams for 62 mammalian species in the file brains.txt.
Apart from the three separated points for two species of elephants and for humans, the
uneven distribution of points hides any useful visual information about the mean of
BrainWt, given BodyWt.
It seems, in any case, that the data are decidedly nonlinear.
Both BodyWt and BrainWt easily satisfy the Log Rule.
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Transforming X and Y

Transforming X and Y
Brainweight vs. Bodyweight
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Transforming X and Y

Transforming X and Y
Brainweight vs. Bodyweight

Both variables seem to satisfy the Log Rule, so let’s open our transformation utility in
RStudio and examine the data.
Enter the following code in the R console window of RStudio.

> library(alr4)

> attach(brains)

> TransformSetup(BodyWt,BrainWt,xlab="Body Weight (kg)"

+ ,ylab="Brain Weight (g)")

Next, transform both variables with λx = λy = 0.
Turn on the OLS and Lowess fit lines, and display statistics.
Your figure should essentially match the next slide.
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Transforming X and Y

Transforming X and Y
Brainweight vs. Bodyweight
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Transforming X and Y

Transforming X and Y
Brainweight vs. Bodyweight

If you experiment with values of λy and/or λx from here, you’ll find only very small
improvements om residual variance can be achieved by moving slightly away from the log
transforms.
Examining the residuals reveals that they show no visually obvious non-random trend.
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Transforming X and Y

Transforming X and Y
Brainweight vs. Bodyweight
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Interpretation of Log-Transformed Regressions

Interpretation of Log-Transformed Regressions

When we deal with the simple regression Ŷ = β1X + β0, interpretation of β1 is easy:
increase of 1 unit in X is associated with an increase of β1 units in the expected value of
Y .
Once variables are log-transformed, things become more complicated.
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Interpretation of Log-Transformed Regressions

Interpretation of Log-Transformed Regressions
Regression of log(Y ) on X

For a model log(Y ) = β0 + β1X + e, a 1 unit increase in X results in a β1 unit increase in
log(Y), which is equivalent to multiplying Y by exp(β1).
Specifically, if log(f (X )) = β0 + β1X , then f (X ) = exp(β0 + β1X ) = exp(β0) exp(β1X ).
Suppose we increase X by 1 unit. Then
f (X + 1) = exp(β0) exp(β1(X + 1)) = exp(β0) exp(β1X ) exp(β1) = f (X ) exp(β1).
For small values of β1, exp(β1) ≈ 1 + β1, so an increase of 1 unit in X would result in a
percentage change in Y of (100× β1)%.
For example, if β1 = 0.02, a 1 unit increase in X would result in approximately a 2%
increase in Y .
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Interpretation of Log-Transformed Regressions

Interpretation of Log-Transformed Regressions
Regression of Y on log(X )

Suppose f (X ) = β0 + β1 log(X ).
Suppose we increase X by 1%. What will happen to f (X )?
Consider the change in f (X ). f (X2)− f (X1) = β1 log(X2)− β1 log(X1) = β1 log(X1/X1).
For small c, log(1 + c) ≈ c , and so a 1% change in X corresponds to a change of slightly
less than β1/100 in Y .
For example, if X1/X1 = 1.01, f (X ) is multiplied by β1 log(1.01) = 0.00995β1, slightly
less than β1/100.
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Interpretation of Log-Transformed Regressions

Interpretation of Log-Transformed Regressions
Regression of log(Y ) on log(X )

Suppose we increase X by exactly 1%. What will be the proportional change in Y ?
log(Y ) = β1 log(X ) + β0. Now, suppose we exponentiate both sides. We get
exp(log(Y )) = exp(β1 log(X ) + β0), or, using the laws of exponents,

Y = X β1 exp(β0)

.
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Interpretation of Log-Transformed Regressions

Interpretation of Log-Transformed Regressions
Regression of log(Y ) on log(X )

With a little algebra, we arrive at

X2 = 1.01X1

Y2/Y1 =
(1.01X1)β1 exp(β0)

X β1
1 exp(β0)

= 1.01β1 (4)

The first few terms of the Taylor Series approximation of 1.01β1 are
1 + 0.00995033β1 + 0.0000495045β21 . This is very close to 1 + .01β1. In other words, a
proportional change of 1% in X will result in a multiple of 1 + .01β1, which approximately
a proportional change of β1% in Y .
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Variance Stabilizing Transformations

Variance Stabilizing Transformations
Transforming Proportions

In many cases the variance of the dependent variable will be a predictable function of its
expected value.
One well-known example is a sample proportion that is an estimate of a probability.
Since probabilities are bounded by 0 and 1, simple linear regression cannot directly model
probabilities as a function of X .
Moreover, many quantities we encounter in practice are “disguised proportions,”, i.e.,
proportions that are multiplied (or divided) by some constant.
Examples include number correct on an exam and infant mortality rates per 1000 births.
Proportion data represents a special challenge that is usually dealt with by a special kind
of regression called logistic regression, which we’ll deal with in a separate module.
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Variance Stabilizing Transformations

Variance Stabilizing Transformations
Transforming Proportions

ALR4 also discusses some transforms that have been used to eliminate certain kinds of
dependencies between means and variances.
The problem is, these transforms may introduce nonlinearity.
Consequently, with count data (where means and variances are related) and proportion
data, Poisson regression and logistic regression have supplanted the use of
variance-stabilizing transforms
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Variance Stabilizing Transformations

Variance Stabilizing Transformations
Transforming Proportions
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