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Invariance of Covariance Structures
Under Groups of Transformations

By M.W. Browne' and A. Shapiro?

Summary: The invariance of covariance structures under Lie groups of transformations is discussed.
Implications for minimum discrepancy estimates of parameters are considered.

1 Introduction

Arguments based on the invariance of a parametric family of distributions under
groups of transformations have been employed in statistical inference for a long
time (e.g. Lehman 1959; Eaton 1972; Muirhead 1982). The present paper will
study the implications of additional assumptions concerning the differential
structure of transformation groups. Groups with differential structure have
become important in many branches of modern mathematics and are known
under the name Lie groups after the Norwegian mathematician Sophus Lie,
1842 —1899.
We shall consider the invariance under Lie groups of transformations of sym-
“metric matrix valued functions employed as models for covariance matrices. It
will be shown that this invariance has certain implications for minimum
discrepancy estimates of model parameters. The results obtained will extend and
unify results due to Dijkstra (1990) who separately treated two types of transfor-
mation. We shall also mention potential applications of the invariance principle
to studies of asymptotic robustness in the analysis of covariance structures.
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2 Fitting a Covariance Structure

Suppose that the vector variate x has a distribution with a p X p covariance matrix
2. A covariance structure is a symmetric matrix valued function 2'(8) which
relates a parameter vector § from a subset % of R? to 2.

The discrepancy between a model Z(0) and a sample covariance matrix S is
measured by means of a discrepancy function F(S,2). This is a nonnegative
twice continuously differentiable real valued function of two positive definite
matrix variables S and 2 such that #(S,2) = 0 if and only if S = 2. A covariance
structure () is fitted to a sample covariance matrix S by minimising F(S, 2 (8))
over &, to obtain the parameter estimate § and fitted structure £ = X(#).

Some examples of discrepancy functions follow.

(a) The normal theory maximum likelihood discrepancy function:
F(S8,2)=log |X| —log | S| +tr [SZ~'1-p . (1)

(b) A specific type of generalised least squares discrepancy function with a weight
matrix independent of X

Fp($,2) =1tV (S-2) . @

Possible choices for the pXxp positive definite weight matrix V, are V=S
yielding normal theory generalised least squares estimates and V = I, yielding
ordinary least squares estimates.

(c) A generalised least squares discrepancy function with a weight matrix that is
a function of 2:

F (S, 2) =41t [Z (S-2) . €)

Here the matrix ¥ in (2) is replaced by the function 2 = 2'(8).
(d) A general form of generalised least squares discrepancy function:

Fi8,2)=(s-a)Y W '(s—0) @

where s and o are vectors with p* =_Lp(p+1) elements formed from the
distinct elements of S and 2 respectively, and W is a p* X p* positive definite
matrix. Generalised least squares discrepancy functions of this sort are used
when normality assumptions for x are inappropriate. The discrepancy function
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Fy(S,Z) in (2) is a special case of F;(S,2) that has received considerable atten-
tion (e.g. Joreskog and Goldberger 1972; Browne 1974; Dijkstra 1990).

3 Invariance of Covariance Structures

Consider a multiplicative group %of nonsingular p X p matrices. Thatis, if Ae 4
and Be ¥then AB '€ % In particular, this implies that the identity matrix I,
is in % Suppose that ¥ possesses the structure of a differentiable manifold near
I,. This means that there exists a neighbourhood A of zero in RY, a
neighbourhood .# of I, in the linear space of p X p matrices, and a continuously
differentiable mapping ¢ of #onto ¥ .#such that ¢(0) = I, and the Jacobian
matrix of ¢ at zero is of full rank ¢.

Thus Zconstitutes a Lie group with matrix multiplication as the group opera-
tion. Associated with & is a corresponding Lie group %* of transformations
defined on the set of symmetric positive definite matrices by X—A4 X A’, where
A’ stands for the transpose of 4 € . We shall examine covariance structures that
are invariant under ¥*. Notice that the covariance matrix A2 A4’ is obtained
from X by the linear transformation x—Ax of the vector variate x.

Definition: A covariance structure 2(0) is said to be invariant under the group
G* if for every € % and A€ ¥ there exists a6*e % such that

Z@%) =AZ(O)A . (5)

This means that for any 4 € ¥ the set
%, =(2:2=2(0), 0 F} (6)

of positive definite matrices corresponding to the given model, remains invariant
under the transformation 2—2>AXA4".

Remark: Suppose that 4 and 9 in (5) determine 8* uniquely. Then to every Ae 4
corresponds the transformation §—A4(6) = 6* of & into itself. It can be shown
that these transformations are one-to-one and onto and form a group ¥ of
transformations of P, the so-called induced group, such that the mapping
%— % is a homomorphism (e.g. Muirhead, 1982, p. 202).
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Given an algebraic expression for 2'(8) and a group ¢ it is usually straight-
forward to verify that the corresponding group %* of transformations leaves
2/(f) invariant. We now give some examples of invariance which appear natural-
ly in the analysis of covariance structures.

Invariance under a Constant Scaling Factor

Consider the group
Y4={A:A=1l, 1#0}

which is homomorphic to the multiplicative group of nonzero real numbers.
Most covariance structures used in practice are at least invariant under %. Im-
plications of this type of invariance are pointed out by Swain (1975), Browne
(1982), Shapiro and Browne (1987) and Dijkstra (1990) amongst others. This is
probably the simplest nontrivial invariance useful in applications. An example of
a structure that is invariant under ¥#, but that is not invariant under the richer
groups of transformations considered subsequently, is the intraclass correlation
model

S=1pl+yl,, %)

with & =1{0=(p,y¥): 9>0, w>0}. Here 1 denotes the px 1 vector of ones.

Invariance under Changes of Scale

Covariance structures that are not destroyed by scale changes of the elements of
X, are invariant under transformations associated with

% ={A:A =Diag(r), 1,#0,i=1,...,p},

where Diag (1) denotes the diagonal matrix with diagonal elements given by the
components of the vector 7= (t(,...,7p)-

An example of a model that is invariant under %% is the factor analysis
model,

X =AA'+Diag () ®
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where A is a pxXm matrix of factor loadings and

F=10=Ay):y;>0,i=1,...,p}.

Invariance under Block Diagonal Transformations

When x consists of & subsets of variates, one may employ block diagonal transfor-
mation matrices of the form

g3={14:A =Diag(A“,...,Akk), detAii;f:O, i= 1,...,k}

where A4; is a p;Xp; matrix, p = p;+...+p; and Diag (4,4, ...,A;,) denotes
the pXp block diagonal matrix with diagonal blocks Ay, ..., 4. An example
of a model that is invariant under %% is the multiple battery factor analysis
model (Tucker 1958),

X =AA'+Diag (¥, ..., ¥) ©)

where the matrices ¥y, i =1,...,k are required to be positive definite.

Kronecker Product Transformation Matrices

Swain (1975) proposed a Kronecker product covariance structure for situations
where each element of x stands for a measurement taken under the combination
of one of p; conditions of one type and one of p, conditions of another type
with p = p; Xp,. The structure is

=202, (10)

where X and 2, are positive definite matrices of order p, X p; and p, X p, respec-
tively, and & denotes the Kronecker product of matrices (see e.g. Muirhead 1982,
p. 73, for the definition and basic properties of the Kronecker product).

This covariance structure is invariant under transformations associated with
the group % of pxp transformation matrices 4 = A; ® A, where A4; is a p;xp;
nonsingular matrix, i = 1,2.
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Orthogonal Transformation Matrices

The factor analysis model with homogeneous unique variances has the covariance
structure

Z=AA'+yl, (1D

where y is a nonnegative scalar. This structure is invariant under transformations
associated with the group % of nonsingular matrices with the property

' 2
AA' =121,

where 7+ 0. Clearly
%= 4 x0(p)

where O(p) is the group of pXp orthogonal matrices.

4 Properties of Fitted Structures Under Transformation Invariance

In this section we study implications of transformation invariance for the mini-
mum discrepancy estimators § and the corresponding fitted structure 5 = Z(§).
First we derive a general result and then we consider applications to particular
models and discrepancy functions.

We start by noting that with every Lie group ¥is associated a linear space 7
tangent to %at [,. Usually this tangent space is not difficult to find and we shall
show subsequently how it can be calculated for every example mentioned in the
previous section.

Suppose that a covariance structure 2'(8) is invariant under the group of
transformations #* corresponding to a Lie group 4, and let 2 = 2(6), 0e %, be
a point in the set & defined in (6). Consider the set

O2X)={Q:Q=AXA', Ae 9},

which is called the orbit of 2 under ¥* The transformation invariance of 2(6)
means that () C #,. A differential structure on () is yielded by the dif-
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ferential structure of ¥ at I,. More specifically, it follows that () is a dif-
ferentiable manifold and its tangent space at X can easily be calculated as
follows. Consider the matrix I,+dA, d4€ J. Then

Up+dA)2(I,+dA) = 2 +(dA)2 + 2 (dA) +higher order terms .
Consequently the tangent space to £(X) is given by
{Z:Z=BX+2X2B', BeJ} . (12)

By definition, the fitted matrix £ is a minimiser of the function F(S, ) over
the set #. Consider the orbit (%) of 2 under %*. Since #(X) C &, and
Ze o), it follows that £ is also a minimiser of F(S,*). By the standard op-
timality conditions this implies that the gradient of F(S, -) at 2 is orthogonal to
the tangent space of #(2) at 2. We now formulate these conditions in a com-
putationally convenient manner. Consider the p X p matrix

Q =0F(S,2)/0x

of partial derivatives of the discrepancy function with respect to the elements of
2. Assume, that for any square matrix 2, F(S,2) = F(S,2"), so that the matrix
Q is symmetric. Define the scalar product

(A,B) =tr [AB']

on the linear space of p X p matrices. The optimality conditions discussed earlier
then mean that tr [0 Z’] = 0 for any matrix Z from the tangent space of £#(2) at
2. Since Q is symmetric, use of (12) yields the following result.

Proposition 1: Suppose that the structure X(0) is invariant under 4*. Let J be
the tangent space to ¥ at I, and let

@ = [BF(S, 2)/0z12 . (13)
Then
tr[@B']=0 (14)

for all Be 7. O
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We shall call € in (13) the reflector matrix because it reflects transformation
invariance properties of 2'(8). Specific formulae for the reflector matrix cor-
responding to the discrepancy functions (1), (2), (3), (4) considered earlier are:

Q,=2"1Z2-9),

Q,=VIC-5)yv'2,
Q. =3"1s2"1<&-95),
and
Q=02

in which the elements of the symmetric matrix Q are related to the elements of
the vector W~ (¢ —s) by

[Qly=1Q-6)IW ' (G-9),
where J;; is the Kronecker delta and

g HG-D+1, i=j
Lii—1)+j, i>j,

when the elements of the matrix (£— ) forming the vector (6 —s) are chosen in
the order 11, 12, 22, 13, 23, 33,....

Let us first consider the group 4. It follows immediately from the definition
of ¢ that its tangent space is the one dimensional linear space generated by the
identity matrix I,. Consequently,

Corollary 1.1: If X(0) is invariant under %%, then the sum of the diagonal
elements of Q is zero.

For example, in the case of the discrepancy function F, and transformations
in 9% we obtain that

tr (S N=p.

This result was pointed out by Browne (1974). Swain (1975) also considered
transformations in ¥ and obtained related results for a family of discrepancy
functions that includes F,, Fy, with V' =S, and F,.
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The tangent space of the group % is the p-dimensional linear space of
diagonal matrices. Therefore,

Corollary 1.2: If X2(8) is invariant under %%, then all diagonal elements of §
are zero.

For example, if we take the discrepancy function £, then invariance under
changes of scale implies that

Diag [(V~'2)] = Diag [V ISV~ '2] .

This result was obtained by Dijkstra (1990). Dijkstra (1990) also provided special
cases of Corollaries 1.1 and 1.2 for Fj, with an arbitrary weight matrix V, and
the Swain family of discrepancy functions.

The tangent space associated with % is the linear space of corresponding
block diagonal matrices. Consequently,

Corollary 1.3: If 2(8) is invariant under 9%, then the diagonal blocks of @ are
null.

The tangent space of & is generated by matrices of the form 4; ®/, and
I, ® A, where Ay and A, are arbitrary matrices of order p;Xp; and p;xp,
respectively. Let  be partitioned into pf submatrices of order p, X p,:

Q2
Q= |2y On

Corollary 1.4: If Z(8) is invariant under 9%, then tr [QU] =0, Vi,j and
Py
Y Q;=0.
i=1

The tangent space of % is generated by the tangent space of the group O(p)
of orthogonal matrices and the tangent space of %. It is well known, and can
easily be calculated from the equation A4’ = I, that the tangent space of O(p)
at I, is the linear space of skew-symmetric matrices. Consequently the tangent
space of @¥ is the direct sum of the space of skew-symmetric matrices and the
one dimensional space generated by I,. Therefore,

Corollary 1.5: If 2(0) is invariant under %%, then § is symmetric and tr [Q]
=0.
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These corollaries will have practical applications. Computation of the reflec-
tor matrix € in computer programs for the analysis of covariance structures will
help in the detection of user errors in specifying a model which does not have
transformation invariance properties that are required by the input data. In par-
ticular there have been many erroneous analyses where a model that is not in-
variant under %% has been fitted to a correlation matrix. Cudeck (1989, p. 317)
has given a long list of published articles where this error has been made. Verifica-
tion by computer programs that diagonal elements of the reflector matrix are null
whenever a correlation matrix has been input would help to prevent further occur-
rences of the error. Any nonnull diagonal elements of the reflector matrix imply
that the analysis of a correlation matrix as if it were a covariance matrix is incor-
rect. On the other hand, if all diagonal elements of the reflector matrix are null
one cannot conclude that the analysis of the correlation matrix instead of the
covariance matrix is appropriate. For example, if the model fits the correlation
matrix perfectly, the reflector matrix will be null and consequently have null
diagonal elements, even if the model is not invariant under changes of scale.

There is another interesting consequence of the invariance principle. Consider
the covariance structure 2'(8) in the vector form o (8) = vec {2'(8)}, where vec (X)
stands for the p?x 1 vector formed from the elements of X stacked columnwise.
We say that a point 6§, is a regular point of the model X'(8) if: (i) §, is an interior
point of 4, (ii) o(#) is continuously differentiable in a neighbourhood of 6,
(iif) the p?x g Jacobian matrix 8o (9)/86’ has constant rank in a neighbourhood
of 6,.

If follows from the regularity of 6, that the set &, considered in the vector
form, is a differentiable manifold near o, = o(6,) and the tangent space to &% at
oy is given by the column space of the Jacobian matrix A4y = do(6,)/96". Since
the orbit £(2y) is in &, we have that the tangent space of J(Zy) is contained in
the tangent space of £,.. Together with formula (12) this implies the following
result.

Proposition 2: Let 6, be a regular point of X(8) and suppose that 2(8) is in-
variant under 4*. Then for every Be J there exists a vector { such that

vec (BZ,+Z,B') = Aol . .

The special case of Proposition 2 for ¢¥ was found useful in studies of asymp-
totic robustness in the analysis of covariance structures (Shapiro 1986; Shapiro
and Browne 1987). Also, Kano, Berkane and Bentler (1990, proof of Theorem 2)
have made use of the special case for %% to show that two discrepancy functions
yield estimators which have the same asymptotic properties.
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