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Analysis of Correlation Matrices Using Covariance Structure Models 

Robert Cudeck 
University of  Minnesota 

It is often assumed that covariance structure models can be arbitrarily applied to sample correlation 
matrices as readily as to sample covariance matrices. Although this is true in many cases and leads 
to an analysis that is mostly correct, it is not permissible for all structures. This article reviews three 
interrelated problems associated with the analysis of structural models using a matrix of sample 
correlations. Depending upon the model, applying a covariance structure to a matrix of correlations 
may (a) modify the model being studied, (b) produce incorrect values of the omnibus test statistic, 
or (c) yield incorrect standard errors. An important class of models are those that are scale invariant 
(Browne, 1982), for then Errors a and b cannot occur when a correlation matrix is analyzed. A 
number of examples based on restricted factor analysis are presented to illustrate the concepts de- 
scribed in the article. 

In recent years the study of structural models for covariance 
matrices (Bentler, 1983; J/Sreskog, 1978) has become increas- 
ingly important in behavioral research. The appeal of this 
method is that it provides a framework for translating general 
ideas about behavior into a more explicit quantitative descrip- 
tion and encourages comparisons of  the relative performance 
of  two or more structures with empirical data. 

Although theoretical work has been presented to justify the 
application of  certain models to correlation matrices (Browne, 
1977; McDonald, 1975; Shapiro & Browne, 1986), the only 
complete statistical theory for structural model analysis has 
been developed for covariance matrices (Browne, 1974; J/Sre- 
skog, 1970; Lawley & Maxwell, 1971). This contrasts with com- 
mon practice in the behavioral sciences in which correlations 
are most often emphasized in data analyses. Apparently, it is 
not well understood that applying a covariance structure to a 
correlation matrix will produce some combination of incorrect 
test statistics, incorrect standard errors, or incorrect parameter 
estimates and may in fact alter the model being studied, unless 
the model under examination is appropriate for scale changes. 
To put the matter more directly, structural models cannot be 
arbitrarily applied to a matrix of correlations at the conve- 
nience of the researcher, even though it is natural and often 
quite important to do so. Kim and Feree (198 l), for example, 
advocate analyses of  standardized variables because behavioral 
science measurements have arbitrary scales, and because inter- 
pretation is facilitated thereby. Structures that are appropriate 
for standardized variables are therefore of  considerable utility 
in practice. 

Thanks to M. W. Browne for several useful discussions that greatly 
clarified the ideas in this article. An anonymous referee also provided 
many valuable suggestions. 

This work was supported in part by the Advanced Education Project 
and Grant RSP 1031 from IBM Corp. 

Correspondence concerning this article should be addressed to Rob- 
ert Cudeck, Department of Psychology, University of Minnesota, 75 
East River Road, Minneapolis, Minnesota 55455. 

In spite of  several technical discussions of this problem 
(Bentler & Lee, 1983, section l; Browne, 1982, section 1.2; 
Krane & McDonald, 1978; Lee & Fong, 1983; Shapiro & 
Browne, 1986; Swain, 1975; Swaminathan & Algina, 1978), in- 
correct applications of structural models to correlation matri- 
ces have persistently appeared I (Bagozzi, 1980, p. 140, hypothe- 
ses I & 2; Bentler & Lee, 1978, p. 348; Blok & Saris, 1983; Cole, 
Howard & Maxwell, 1981; Cornelius, Willis, Nesselroade, & 
Baltes, 1983; Cunningham, 1980, p. 141; Everitt, 1984, section 
3.6.3; Jibreskog, 1981, section 4.4; J/Sreskog & S/Srbom, 1984, 
p. 1II.89; Lansman, Donaldson, Hunt, & Yantis, 1982, Table 9; 
Lee, 1979, section 4; Linn & Werts, 1982, Table 5.5; MacLeod, 
Jackson, & Palmer, 1986; Marsh & Hocevar, 1983, p. 241; Mc- 
Donald, 1980, section 4, examples 1-3; Rindskopf, 1984, p. 41; 
Wefts, Breland, Grandy, & Rock, 1980). It is possible, indeed 
likely, that erroneous theoretical conclusions have been re- 
ported because of  this statistical misunderstanding. 

The purpose of this article is to review the statistical issues 
associated with applications of structural models to correlation 
matrices. Inasmuch as descriptions of  this problem have ap- 
peared mostly in technical sources, it seems appropriate to 
summarize it in a more generally accessible form. In the process 
of  doing so, this review emphasizes models that are invariant 
with respect to changes in scale. Some suggestions are given for 
alternative ways to estimate a model when a correlation matrix 
is examined. 

For convenience in this discussion, I make use of examples 
from restricted factor analysis. Restricted factor analysis is a 
specialization of more general covariance structural models, for 
example, the well-known latent variable model operationalized 
by the LISREL computer program (J/Sreskog & SSrbom, 1984, 
version VI). It is, nonetheless, a very useful special case, in that 
it serves as a building block for other more complex structures. 

1 Although this list is hardly exhaustive, it includes several distin- 
guished scientists at the insistence of a referee who reassuringly stated, 
"It is good for one's character, not bad for it, to acknowledge past errors 
and clearly be capable of learning?' 
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Indeed, one characterization of the LISREL model itself is as a 
system of  three interdependent factor analysis structures (J6re- 
skog & S6rbom, 1977, section 2.1). Furthermore, much of  the 
recent literature specifically concerned with the effects of ana- 
lyzing correlation matrices with structural models has dealt 
with factor analysis. Finally, a large proportion of  the applica- 
tions of structural models in psychological research deal with 
factor models. For these reasons, this article emphasizes factor 
analysis models and attempts to generalize from them to other 
cases. 

The actual use of many statistical methods in present-day be- 
havioral research is often dependent upon the particular way in 
which one or two computer programs implement a general idea 
for data analysis. For most social scientists, the analysis of  co- 
variance structures is more or less synonymous with the pro- 
gram and mathematical model in L1SREL, even though perhaps 
hal fa  dozen other programs have been written and applied suc- 
cessfully. Although LISREL is an important development, it does 
not incorporate all of  the features needed for the tremendous 
range of problems in applied research. Some useful models sim- 
ply cannot be formulated as special cases of the particular struc- 
ture operationalized in LISREL. Each of the other programs one 
might consider has a somewhat different set of limitations, how- 
ever, so this observation is not specific to LISREL. Nonetheless, 
because of  its wide availability, and because no other alternative 
is clearly preferable, this article assumes that LISREL is the pro- 
gram on hand. This imposes a particular philosophy of  covari- 
ance structures that is not necessarily optimal for the problems 
described here; but to give a realistic review of  the comparative 
advantages of alternative programs would complicate this re- 
view substantially and not benefit the reader enough to justify 
the additional material. 

Sca le - Inva r i an t  Mode l s  and  Scale-Free  Pa rame te r s  

It will be useful in the following discussion to define certain 
terms and equivalence relations. A regrettable aspect of the lit- 
erature on this topic is that there is little consistency in the labels 
applied to particular aspects of the problem. For example, the 
terms scale-free, scale independent, and scale invariant in unre- 
stricted factor analysis each have been applied to the property 
that the factor pattern from a correlation matrix is simply a 
rescaling of  the factor pattern from the associated covariance 
matrix. Consequently, in this discussion I use terms that are felt 
to be appropriate for the various aspects of equivalence that 
are reviewed and refer to specific definitions as needed. This, 
unfortunately, guarantees that the terms used here will not al- 
ways coincide with the terms used elsewhere. In particular, I use 
labels that differ from those favored by Krane and McDonald 
(1978) in their important treatment of this subject, although 
several of the specific relationships were first emphasized in 
their article. 

Definition. A model  for a covariance matrix is a symmetric 
matrix-valued function X = 2;(3') of  a parameter vector % where 
the order of  2; and 3" a rep  × p and q, respectively. 

For an illustration, consider three factor analysis models: 

~,k = ~,(3"k) = Ak ' kA ' k  + XI'k, k = 1, 3, (1) 

where for Model 1, 

0 1 X2 ' \a2, a2 2]' 
~I'l = diag (~z, if2, if3, ¢4), 

so that 3"t = (kt, X2, a 2, a+l, c r+, 4q, ~2, if3, ¢4); for Model 2, 

A~=(;' 0X2 0 0) ,X2 X3 "2=(10 7)' 

+'2 = diag (¢q, fig, 413, if4), 

so that 3"~ = (~,~, X2, ~,3, p, ff~, ¢]2, ~k3, ¢4); and for Model 3, 

A 3 = ( ;  1 0h2 0 0 ) , X 3  ~.4 "3=(1+ o 7 ) '  

~I'3 = diag (¢]1, if2, if3, ¢4), 

so that 3"~ = (kt, X2, k3, X4, p, ¢1, ¢;2, ¢3, ¢4). 
Definition. A correlation structure is a symmetric matrix- 

valued function, P = P(O), with diagonal elements equal to 
unity. 

For factor analysis, one writes 

P = P(O)  = A<~A' + +,  

and it is emphasized that diag (P) = diag (A+A' + +)  = I. 
Definition. A model ~(3") is scale invariant if, for any diago- 

nal matrix D+ = (c+j ¢ 0) and any parameter vector 3", there 
exists another parameter vector 3"* such that 

~(3"*) -- D~2(3")D~ (2) 

(Browne, 1982, section 1.2). Individual transformations for ele- 
ments of 3"* in Equation 2 are represented by the functions 

3'* =f j (a ,  3"i), j = I, . - . ,  q, (3) 

where a '  = (a t ,  " . . ,  %). 
To illustrate, with the parameter vector 

3"*' = (x*, x*, ~,2, ~ , ,  ~,2, ¢,,, ¢~,, ~,, ¢,I'), 

where 

and 

k~ = (a2/al)Xl, (4a) 

kS = (a4/a3)k2, (4b) 

ar 2 = a~a~, (4c) 

a~l = a3al~21, (4d) 

a~ 2 = a~a~, (4e) 

++,, = (+7) = o ~ + ,  

it can be seen that Model 1 is scale invariant because 

(4t) 
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z ( ~ * )  - a * ¢ * X * '  + ,i,~ = 

2 2 011(0" 1 + 1~ 1 ) 
~20/~ X l #l 2 

0/30/1 (721 

0/4 0/1 X2 if21 

, , , 2 +  * *  

l O l  sx I O" I T ~//'~ 

2 2 2 
a2(Xl~l  + .~2) 
Ot30/2~ 1 O"21 ¢X2(0"22 + t#3) 

a4  0/2 ~1 ~2 0"21 0/4 0/3 ~2 ~22 

---- Da]E(q¢ l )D~. 
2 2 2 

By the same argument, Model 3 also can be shown to be scale 
invariant. For Model 2, on the other hand, it is not possible to 
choose 3'~ such that ]g(-¢~') = D~Ig(~,2)D~, unless one also takes 
a2 = a3, which violates the requirement that components of D~ 
be arbitrary. 

An important corollary of  the previous definition is that if 
a model ]g(-y) is scale invariant, then there exists a parameter 
vector ;¢ such that I = diag [~(~)]. Obviously, every covariance 
matrix can be transformed into the corresponding correlation 
matrix by rescaling, using P = D,- l lgD,  -~ , where De = diag 
(X)t/2. Therefore, every scale-invariant covariance structure can 
be transformed into the associated correlation structure by 
simply rescaling the model parameters by functions of  standard 
deviations. With Model 1, for example, one takes D~ = D, in 
Equation 2, with individual relations among parameters speci- 
fied by Transformations 4. Conversely, a scale-invariant covari- 
ance structure can be developed from its associated correlation 
structure by the inverses of these transformations, assuming 
that standard deviations are known. 

Definition. A parameter 3"i E 3' is scale-free (a) if  the model 
• (3') of  which it is a part is scale invariant and (b) if for all 
choices of D~ in Equation 2, ~ '  = 7i (Krane & McDonald, 
1978). 

For example, there are no scale-free parameters in Model 1 
because Condition b is not met for any 7i. Model 2 is not scale 
invariant (Condition a). Model 3 is scale invariant, but the only 
scale-free parameter is the factor correlation p. All other param- 
eters of Model 3 are scale dependent. 

In summary, a structural model for a covariance or correla- 
tion matrix is a matrix-valued function in which t hep (p  + 1)/2 
elements of ]g or P are scalar-valued functions of  q independent 
variables "y. A correlation structure further requires that diag 
[P(~)] = I. Scale invariance is a property of  a model such that 
any rescaling of the covariance matrix yields another covari- 
ance matrix that also satisfies the model. An individual parame- 
ter in a scale-invariant model is scale-free if it remains un- 
changed in all rescalings of  the covariance matrix. A model that 
is scale-invariant may contain parameters that are scale-free. 

A p p l y i n g  Covar i ance  S t ruc tu re  Mode l s  to  
Cor r e l a t i on  Mat r i ces  

When a covariance structure is applied to a matrix of ob- 
served score correlations, the circumstances of the analysis 
change considerably, although this condition may not be appre- 

ciated. As a result, the analysis of  correlation matrices is often 
associated with several kinds of errors, one or more of which 
may be present in any particular context. The difficulty of  great- 
est concern is that the scaling of the sample moment matrix 
often alters the form of the structure being studied. A second 
problem concerns the possibility that different values of the om- 
nibus test statistic may be produced when correlations rather 
than variances and covariances are examined. A third issue is 
that the estimated standard errors associated with individual 
parameter estimates are incorrect in an analysis of  correlation 
matrices, unless certain specific corrections are made. 

Effects of Scale Changes on the Model 

Although factor analysis models such as Model 1 generally 
are developed for covariance matrices, it often is of interest to 
examine an associated correlation structure. In order to do so, 
however, one must explicitly consider the population standard 
deviations (Krane & McDonald, 1978, section 5), that is, one 
must consider a model of  the form 

x = D~Z* D, = D,(AcI, A' + ~ )D , ,  (5) 

where the diagonal matrix D,  contains scaling terms. If  Struc- 
ture 5 were to be studied in practice, it would entail estimating 
up to p more coefficients than Model 1, depending upon the 
identifiability of  the particular model. It is important to note 
that diag (Ig*) = I does not necessarily obtain, unless D,  = diag 
(~)u2. Nonetheless, to assume that the factor model is a correla- 
tion structure, the unit diagonal elements of Z* must obtain 
exactly. A model similar to Model 5 was studied by Browne 
(1982, pp. 108, 131; see also Bentler & Lee, 1983), who im- 
posed the constraint 

diag (]g*) = diag (AOA' + ~ )  = I, (6) 

by numerical methods to ensure that X* = P is a correlation 
matrix. This method requires the use of  special-purpose com- 
puter programs, however. LISREL in particular has not yet im- 
plemented constraints of  this kind. 

Many users of factor analysis proceed by standardizing the 
sample covariance matrix, S, to the associated matrix, R, of 
sample correlations and then applying Model 1 to the trans- 
formed data without regard for the possible effects this has on 
the structure. This may not affect the analysis in any unex- 
pected way, depending upon the particular model. In other set- 
tings, the rescaling changes the model completely. For if the 
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model is not appropriate for such transformations, the struc- 
ture actually fit is 

2 = Ds(AOA' + 't')Ds, (7) 

where the diagonal matrix Ds contains sample standard devia- 
tions. But D, is a stochastic matrix, varying from sample to 
sample. D~ is an estimator of  the population standard deviations 
but not of  D,  under Model 5. Clearly, Models 7 and 1 are very 
different, inasmuch as the former contains the stochastic term 
D,, and the latter does not. Models 7 and 5 are also not equiva- 
lent, because the former assumes I)o = D~, whereas in the latter, 
D,  is a parameter to be estimated. 

This point can be generalized by summarizing as follows: it 
is not always possible to apply an arbitrary covariance structure 
such as 

= r . , (~)  ( 8 )  

to a matrix of  observed correlations without regard for the 
effect that such a transformation may impose on the model. By 
carrying out the analysis of  the original model with corre- 
lations, one modifies the structure being studied, so that 

2 = DsZ(~)D,, (9) 

and Structures 8 and 9 - - the  first of  which the researcher be- 
lieves is examined and the second of  which is actually ana- 
l y z e d - a r e  not identical. 

Although this problem arises in general with the analysis of 
a correlation matrix, it does not occur with scale-invariant 
models. For example, if a factor analysis model is invariant, it 
is always possible to obtain estimates of  the parameters such 
that the conditions in Equation 6 hold. In this case, it is permis- 
sible to apply the model to a matrix of  correlations. The original 
structure will not be modified. The effect of  rescaling S to R 
only modifies elements of  the parameter vector 3,. 

For example, Model 1 and Model 3 are scale invariant and 
may be applied to a correlation matrix. In contrast, Model 2 
can only be applied to a covariance matrix, unless special com- 
puting methods are used, because otherwise the actual model 
studied is Model 7, which of  course is not the same as Model 1. 

Rescaling Parameter Estimates From 
Scale-Invariant Models 

Even i fa  model is scale-invariant, there is no guarantee that 
the reproduced matrix implied by the model will have a unit 
diagonal. According to the definition given earlier, however, cor- 
relation structures must have 

diag (P) = I. (10) 

Therefore, a scale-invariant model is not sufficient in itself to 
ensure that a proper correlation structure will be obtained. 
Nonetheless, if an invariant model is analyzed, it is always possi- 
ble by Equation 3 to compute rescaled estimates -~* such that 
Condition 10 does result. This obviously suggests that as a gen- 
eral rule, one should rescale the parameter estimates, if the situ- 
ation so requires, to ensure that the necessary condition for a 

correlation structure holds (Browne, 1982; Krane & McDon- 
ald, 1978, section 5). 

Krane and McDonald (1978) proved that two classes of in- 
variant factor analysis models give a reproduced matrix with 
unit diagonal elements when applied to sample correlations 
(see also Howe, 1955, sections 2.4, 5.2). These are (a) the unre- 
stricted orthogonal model estimated with maximum likelihood 
and (b) the restricted oblique model (Equation 1), also esti- 
mated with maximum likelihood, where diag (O) = I, ,t, is un- 
constrained, and restrictions to A are only fixed zeros. No cor- 
responding proof  could be developed for the restricted orthogo- 
nat model under maximum likelihood, even though this model 
is scale-invariant when A contains only fixed zeros. B~' contrast, 
there apparently is no class of factor analysis model estimated 
by generalized least squares that will always satisfy Restriction 
10 when applied to correlations, nor are there any broad classes 
of  more general covariance structures that do. In all of these 
cases, researchers must determine whether estimates from a 
particular model need to be rescaled before reporting the re- 
suits as a correlation structure. 

To illustrate these ideas, consider a model for the artificial 
data set shown at the top of Table 1. An unrestricted two-factor 
orthogonal model was originally fit to these data, which is iden- 
tified with df= 4 if ~,~2 = 0. As was noted previously, this struc- 
ture is scale invariant. By Krane and McDonald's (1978) theo- 
rem, estimates from the model will satisfy Restriction 10 if it is 
applied to sample correlations. 

Consider a second structure obtained from the first by impos- 
ing the additional restriction ~61 ~--" 0. Table 2 contains the maxi- 
mum likelihood parameter estimates given by LISREL. Also in 
Table 2 is the reproduced dispersion matrix implied by the esti- 
mates. Although this is an assumed correlation structure, it is 
not the case that diag (2i.2k ' + ~ )  = I from the parameter esti- 
mates. The required condition, diag (/i ,*~*' + {,*) = I, does 
obtain when a rescaling according to Equations 2 and 3 is ap- 
plied. In this case, the transformations are it* = D j r  and ~ *  
= DE{ ', where De = [diag (2kA' + ,~,)]-u2. These transformed 

estimates are shown in Table 3, together with the reproduced 
matrix. 

As is explained in the next section, the maximum likelihood 
test statistic when A* and {,* are obtained from R will be iden- 
tical to the test statistic that is obtained when A and ~ are com- 
puted from R. Other derived statistics that use the reproduced 
matrix may be different, and this could be important in some 
settings. In this illustration, for example, the root-mean-square 
residual from the original estimates is 0.141, but that from the 
rescaled estimates equals 0.126. 

In summary, when a model is applied to sample correlations, 
one should ensure that the reproduced matrix satisfies Restric- 
tion 10. If it does not, it should be rescaled according to 
Equations 2 and 3 so that the requirements of  a correlation 
structure hold. 

Effect of Scale Changes on the Omnibus Test Statistic 

A second problem that arises in practice concerns the omni- 
bus test statistic associated with the hypothesis 

H o : ~  = ~(~). (11) 
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Table 1 
Data Sets Used in Examples 

Artificial data, n not specified a 

1. 1.000 
2. .585 1.000 
3. .778 .780 1.000 
4. .155 .368 .281 1.000 
5. .084 .284 .185 .462 1.000 
6. .281 .612 .489 .813 .726 1.000 

Vocabulary tests, n = 649 b 

1. 15 items, untimed 86.40 
2. 15items, untimed 57.78 86.26 
3. 75 items, speeded 56.87 59.32 97.29 
4. 75 items, speeded 58.90 59.67 73.82 97.82 

School subjects, n = 220 c 

1. French 1.00 
2. English .44 1.00 
3. History .41 .35 1.00 
4. Arithmetic .29 .35 .16 1.00 
5. Algebra .33 .32 .19 .59 
6. Geometry .25 .33 .18 .47 

1.00 
.46 1.00 

Aptitude tests for two populations, na = 865, nb= 900 d 

1. 63.38 67.90 
2. 70.98 110.24 72.30 107.33 
3. 41.71 52.75 60.85 40.55 55.35 63.20 
4. 30.22 37.49 36.39 32.30 28.98 38.90 39.26 35.40 

a From "Estimation of Covariance Structure Models When Parameters are Subject to Functional Con- 
straints" by S.-Y. Lee, 1980, Psychornetrika, 45, p. 316. Copyright 1980 by the Psychometric Society. 
Adapted by permission. 
b From "Structural Analysis of Covariance and Correlation Matrices" by K. G. J6reskog, 1978, Psychome- 
trika, 43, p. 452. Copyright 1978 by the Psychometrika Society. Reprinted by permission. 
From An Introduction to Latent Variable Models (p. 23) by B. S. Everitt, 1984, New York: Chapman and 

Hall. Copyright by B. S. Everitt. Reprinted by permission. 
d From "Comparison of Correlations, Variances, Covariances, and Regression Weights With and Without 
Measurement Error" by C. E. Werts, D. A. Rock, R. L. Linn, and K. G. JSreskog, 1976, Psychological 
Bulletin, 83, p. 1008. Copyright by the American Psychological Association. Reprinted by permission. 

The test of this hypothesis depends upon the particular method 
of estimation used. The method that has received the greatest 
amount of attention is based upon the maximum likelihood dis- 
crepancy function, 

M = t r  ( S ~  -1) - log ]SX-t[ - p, (12) 

under the assumption of multivariate normality, from which 
one obtains maximum likelihood estimates. The arguments to 
be made, however, also apply to the method of generalized least 
squares, as well as to other distribution forms. It is well known 
that the statistic (n - 1)M for evaluating Hypothesis 11 is dis- 
tributed in large samples as x 2, with df  = l/2p(p + 1) - q, where 
n is equal to sample size. 

When an arbitrary covariance structure is applied to a corre- 
lation matrix, the function minimized in general is not Equa- 
tion 12. Instead, one minimizes a different function, 

1VI = tr (RX -~) - log [R~-l[ - p  = tr (S2 -~) -- log 182-11 - -p  

= tr [S(DsXD~) -l] - log IS(D~D~)-II - p .  (13) 

Rather obviously, at the respective minima, lVl ÷ M, except 
when Ds = I. (For a related discussion pertaining to generalized 
least squares in the context of a specific model, see Lee & Fong, 
1983, section 1.) This means that applying a model to S in gen- 
eral will produce a value of the test statistic different than that 
obtained from a corresponding analysis of R. In practical terms, 
it raises the undesirable possibility that two researchers examin- 
ing the same model with the same data could reach substan- 
tively different conclusions about the plausibility of the model 
depending only upon the scaling of the sample data. 

It also should be noted that because many of the recently 
proposed alternative indices for assessing the fit of models to 
data (e.g., Bentler & Bonett, 1980; Browne & Cudeck, in press; 
Cudeck & Browne, 1983; Steiger & Lind, 1980; Tucker & Lewis, 
1973) are themselves functions of the discrepancy index used, 
this problem in no way is alleviated by emphasizing one of 
them. 

Although this difficulty applies to arbitrary structural models 
in general, it does not apply to all models. If a structure is scale 
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Table 2 
Parameter Estimates and Reproduced Matrix for a Two-Factor Model, 
Without Rescaling for Correlation Structure 

Reproduced matrix, unscaled ~ 41 

1.00 .79 .00 a .38 
.45 0.88 .57 .49 .31 
.70 .65 0.89 .88 .29 .02 

-.11 .33 .13 1.05 -.14 .84 .32 
-.16 .26 .05 .68 1.07 -.20 .77 .43 

.00 .49 .29 .84 .77 1.00 .00 ~ 1.00 .00 b 

a Fixed zero. b Constrained boundary value. 

invariant, then analogous to Function 13 using the model of 
Equation 2, 

IVI = tr [ R ~ ( 3 , * )  -~] - l o g  IRm(-t*)-~l - p 

= tr {S[DsZ('v*)Ds]-'} - log IS[Dsm(~*)Ds]-'l - p .  (14) 

Functions 12 and 14 are not the same, and they have different 
minimizers. But x = ~(~/) = DsX(3,*)Ds, so at their respective 

~ 

minima, M = M. Therefore, one may conduct an analysis with 
R = D~ ~ SDj-I, with the assurance that the test statistic would 
be identical to that based on S (Krane & McDonald, 1978; Law- 
ley& Maxwell, 1971). Obviously, and importantly, any substan- 
tive conclusions based upon these tests would also be identical 
in either type of scaling of the sample data. 

As a demonstration of these relationships, consider the covar- 
iance matrix in the second section of Table 1. If one applies the 
factor analysis Model 1 to these data, one obtains ×2 = 0.70 
with both S and R. By contrast, if Model 2 is used, one obtains 
the test statistic x 2 = 5.81 with sample covariances, but x 2 = 
1.50 with sample correlations. For the purpose of evaluating 
Hypothesis 11, the correct statistic is the first. 

The foregoing discussion suggests a practical rule for deter- 
mining whether a particular mode is scale invariant. This may 
be useful if the model is complex and therefore difficult to study 
algebraically. Fit the structure twice, once to a sample covari- 
ance matrix, and again to the matrix of correlations. The struc- 
ture certainly is not invariant if at the minima, M ~ M, or 
equivalently,, if the two test statistics are unequal. If at the min- 
ima, M = M, the model very likely is invariant, but the equality 
of the function values is not in itself sufficient evidence. 

Effects o f  Scale Changes on Standard Errors 

If Hypothesis 11 cannot be rejected, then it often is of interest 
to go on to test the significance of individual coefficients of the 
model using the statistic 

Zi = gti/se(2/, ), (15) 

where se(~,~) is the estimated standard deviation of-ri evaluated 
at ~,~. Let Zc denote the two-tailed critical point of the standard 
normal distribution at probability a. Then one rejects the hy- 
pothesis 

H o : 7 ~ = 0  

at the 100(1 - a)% level when ]zil >- z~. In other settings it may 
be useful to construct confidence intervals of the form 

P ( L I ~ 7 i ~ L 2 )  = 1 - a, 

where L1 = "ri - zc.se(~i) and L2 = "ri + zc.se('~i). These proce- 
dures, although used somewhat less often in practice than the 
omnibus test, are nonetheless important in many applications 
of structural models. For example, they constitute the primary 
evidence for demonstrating that nonzero relationships exist 
among certain variables in a model. 

Most computer programs, following the usual derivation of 
standard errors (e.g., Lawley & Maxwell, 1971), assume that 
se(-~) is estimated from a covariance matrix. When a correla- 
tion matrix is used instead, these procedures give incorrect re- 
suits (de Pijper & Saris, 1982, section 1). Consequently, at least 

Table 3 
Parameter Estimates and Reproduced Matrix for a Two-Factor Model, 
With Rescaling for Correlation Structure 

Reproduced matrix, rescaled A* ~/* 

1.00 .79 .00 ~ .38 
.48 1.00 .61 .52 .36 
.74 .74 1.00 .94 .31 .02 

-.11 .34 .13 1.00 -.14 .82 .31 
-.15 .27 .05 .64 1.00 -.20 .75 .41 

.00 .52 .31 .82 .75 1.00 .00 a 1.00 .00 b 

a Fixed zero. b Constrained boundary value. 
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some standard errors are wrong in virtually all reported analy- 
ses of correlation structures. 

If a model that is not scale invariant is applied to a correla- 
tion matrix with most computer programs, all of the estimated 
standard errors will be wrong. If a scale-invariant model is ap- 
plied to a sample correlation matrix, the standard errors associ- 
ated with scale-free parameters will be correct, but standard 
errors associated with scale-dependent parameters will be in- 
correct. Formulas are available that give correct standard errors 
for scale-invariant models when a correlation matrix is ana- 
lyzed (see Lawley & Maxwell, 1971, sections 5.3, 7.7, for some 
factor analysis models estimated by maximum likelihood, and 
Browne, 1982, section 1.6, for other models and other estima- 
tion methods), but as of this writing, these corrections have not 
been included in most computer programs. In particular, they 
apparently are not implemented in the current version of 
LISREL. 

For an illustration of the relationships among various stan- 
dard error estimates, consider Model 3 mentioned earlier. If the 
model is applied to a sample correlation matrix, then Transfor- 
mations 3 between original and rescaled parameters are 

)k~ = OtiXi, ~ ~_ Ot i2~i, P* = p, (16) 

for i = 1, • •., 4, where in this example, a~ = 1/siis the reciprocal 
of the sample standard deviation of the ith variable. Denote the 
correct standard error for "r* as se(~*). An incorrect standard 
error for 3'*, calculated by most computer programs, is ob- 
tained by applying the same transformations to se(~) as are 
used in Transformations 16. These would be arse(],~), 
ai z. se((bi), and se(~) for the coefficients ~,*, ~*, and p*, respec- 
tively. But with ~,*, for example, se(~*) 4= arse(~i). So even 
though ~* = ai~i, the two intervals, 

[i,~ - zc.se(~?) <- x~ <__ ~ + Zc.Se(~,~)] 

and 

[~i~i - Zc .~ i . se(~i )~  ~iXi<-~ ~i~i + Zc.~i.se(~i)], 

are not equal. 
For a similar reason, when evaluating 

Ho: k* = 0, (17) 

the correct test statistic 

z* = ~*/se(X*) (18) 

is not the same as the incorrect ratio 

zi = (ai~i)/[ar se(~i)]. (19) 

Nonetheless, Statistics 19 and 15 are obviously equivalent, so if 
),~ = 0, then ),* = a~k~ = 0 as well. Paradoxically, this means that 
Statistic 19 often can be correctly used to test Hypothesis 17, 
because whenever hi = 0, then Hypothesis 17 must hold as well. 

As an example of the discrepancy that occurs in computing 
standard errors, consider the correlation matrix in the third sec- 
tion of Table 1. We fit a structure similar to Model 3 but modify 
the pattern matrix to be 

Table 4 
Parameter Estimates and Standard Errors, With and Without 
Corrections for Standardization 

Standard error 

Parameter Estimate Uncorrected Corrected 

xl .690 .076 .059 
x2 .671 .076 .060 
x3 .531 .076 .064 
~4 .764 .068 .046 
~5 .764 .068 .046 

.616 .069 .053 
~21 .598 .072 .072 
~t .524 .082 .082 
~2 .550 .082 .080 
~2 .718 .082 .080 
~4 .416 .069 .070 
~5 .416 .069 .070 
~6 .620 .072 .065 

2~t = (~  1 0 ~2 0 ~k3 0 0 )k 4 )k 5 0~k6) " 

Again using LISREL and maximum likelihood estimation, we 
find the omnibus test statistic to be x 2 = 7.92 with eight degrees 
of freedom. The estimates of the parameters are listed in col- 
umn 2 of Table 4. The third and fourth columns of the table list 
estimated standard errors associated with each parameter, first 
in their uncorrected form as printed by LISREL and then after 
corrections for standardization have been applied (Lawley & 
Maxwell, 1971, section 7.7). The estimated standard error for 
~b2~, the only scale-free parameter of this model, is identical in 
the two sets of coefficients (the value se(~) = .082 is also the 
same, but only coincidentally so). The other standard errors are 
different in the two columns, at times substantially so. In the 
worst case, the standard deviation associated with ~,4 and ~5 is 
incorrect by a factor of 100(.068 - .046)/.046 = 48%. 

In summary, if a structural model is applied to a sample cor- 
relation matrix using standard error formulas that assume that 
the covariance matrix has been analyzed, then the values of the 
estimated standard errors in general are incorrect, unless the 
parameter is scale-free. This is why se(~20 in the last model is 
correct in both sets of estimated standard errors. I fa  computer 
program has specifically included formulas for standard errors 
that assume a correlation matrix is to be analyzed, then the 
standard errors will be correct only when applied to parameter 
estimates from scale-invariant models (such as the factor analy- 
sis Models 1 and 3). If a structure that is not scale invariant 
(e.g., Model 2) is applied to a sample correlation matrix, then 
in addition to the incorrect parameter estimates, the standard 
errors will be incorrect as well. 

Rescaling in  Mul t ip le  G r o u p  Analyses 

An important development in the study of structural models 
is the necessary theory for multiple group analyses. This work 
was pioneered by JiSreskog (1971) for factor analysis and later 
extended to general covariance structures. The problems asso- 
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ciated with rescaling observed variables in multiple population 
studies are potentially more serious than those in studies with 
single populations, because different transformations can be ap- 
plied to each group individually. As has often been noted, stan- 
dardizing covariance matrices separately for each sample re- 
moves information about variability that is essential for a cor- 
rect analysis. Most published studies have been careful to avoid 
this error. 

This does not mean that group covariance matrices must al- 
ways be used in the analysis of multiple populations. Indeed, for 
the sake of interpretability of  the estimates, it has been recom- 
mended that a common rescaling be applied to data from each 
group (J/Sreskog, 197 l, section 3.4). In this procedure, one ob- 
tains samples of  size ng from g = l, • • -, m independent popula- 
tions, most often on a common set o fp  variables, producing m 
distinct covariance matrices, Sg. These in turn may be trans- 
formed in a consistent manner, using 

S* = DSgD, (20) 

where D = diag (S) -~/2, and S = (n - 1) -~ Z (% - 1)S~ is the 
pooled covariance for n = n~ + . . .  + n m  combined cases. It 
has been thought that this rescaling can be performed at the 
convenience of  the researcher if  so desired. 

In light of  the discussion pertaining to rescaling covariance 
matrices in a single population, it can be seen that this practice 
cannot always be followed. In particular, it will only be possible 
to rescale in this way if each model applied to the m groups is 
scale invariant. As an example, consider the case in which m = 
2 and suppose that Model 3 is applied to the first sample and 
that Model 2 is applied to the second. It can be shown (J/~reskog, 
1971, section 2.3) that if  there are no constraints between pa- 
rameters across the various groups, then Function 12, the maxi- 
mum likelihood discrepancy function, will be the sum of  the 
two discrepancy functions for each model applied separately, 
that is, M = M~ + M2. (For brevity in this section, M will denote 
the minimum of  Function 12 over the parameter space.) In the 
present case, the model applied to Sample 1 is scale invariant, 
so whether the rescaling in Equation 20 or any other instance 
of  Equation 2 is used, one has on the basis of Equation 14 IVl~ = 
M~. In contrast, the model for Sample 2 is scale dependent, so 
in general, M2 6 1(42. By reasoning in this way, it can be shown 
that in any analysis in which one or more of  the models applied 
to the m populations is not scale invariant, it must be that M =/: 
lVl for the overall discrepancy function. 

For example, consider the data from a two-population study 
given in the bottom section of Table 1. In Table 5 are results 
from applying several combinations of  the factor analysis 
Models 2 and 3, either to sample covariance matrices or to the 
matrices rescaled as in Equation 20. In the first analysis, Model 
3 is applied to each sample, giving identical values of  the test 
statistic for either kind of  scaling. In the second analysis, Model 
2 is applied to both groups. This model is not scale invariant, 
and the test statistics are quite different for the matrices Sg in 
comparison with matrices S~'. The third analysis applies Model 
3 to Sample 1 and Model 2 to Sample 2. Again, the test statistics 
are very different. The final analysis fits Model 3 to each sampl e 
and also constrains the factor-loading matrices to be equal in 

Table 5 
Test Statistics for Models Appfied to Two Samples, With 
Scaled or Unscaled Covariance Matrices 

Model Test statistic for 

Analysis Group I Group 2 S~ S* df 

1 3 3 2.18 2.18 2 
2 2 2 145.57 2.20 4 
3 3 2 81.61 2.19 3 
4 3 ~ 3 a 7.65 7.65 6 

Equality constraints between factor pattern matrices. 

the two populations, so that A~ = A2. Here again the test statis- 
tics are equal. It is interesting to note how similar the pattern of  
test statistics is in Analyses l, 2, and 3 using rescaled covariance 
matrices when, as can be seen with the unscaled dispersion ma- 
trices, the performance of  the various combinations of models 
is actually very different. 

Al terna t ives  for Ana lyses  o f  Cor re l a t i on  Mat r i ces  

In any study of  covariance structures, a complete statistical 
analysis gives estimates of  model parameters, estimates of  stan- 
dard errors for these parameters, and a test of fit for the whole 
model, in practice usually based on either the maximum likeli- 
hood or generalized least squares test statistics. When a model 
that is not scale invariant is applied to a sample correlation 
matrix using a program designed for covariance structure anal- 
ysis such as the current version Of LISREL, all of these computed 
quantities are incorrect, and the model studied is actually modi- 
fied with respect to the model originally intended, such as was 
illustrated in Equation 9. An obvious protection against these 
errors is to always conduct an analysis using the sample covari- 
ance matrix, for then none of these problems can occur. In 
many research reports, there appears to be no compelling rea- 
son why the authors prefer a correlation structure rather than a 
covariance structure, except perhaps the habit associated with 
using correlations. 

Of course in other settings, the analysis of  standardized vari- 
ables is highly desirable in its own right (Kim & Feree, 1981). 
If  a scale-invariant model is applied to sample correlations, 
then the structure is not modified, and the omnibus test statistic 
is accurate. Furthermore, estimates of  model parameters are 
correct, subject perhaps only to a final rescaling to ensure that 
Restriction 10 holds. The standard errors produced by most 
computer programs will still be incorrect for some parameters, 
and there appears to be no way in general to avoid this aspect 
of  the problem without using, special procedures. In many in- 
stances, a structure may contain one or more scale-free parame- 
ters. The standard errors for these coefficients will be correct, 
even if other parameters in the model are scale dependent. 

In many investigations of  correlation structures, the model is 
not scale invariant, and one cannot simply proceed in the usual 
manner. The factor analysis Model 2 is an example of  such a 
structure. In this case, the only possible alternative is to employ 
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a completely different methodology that will yield correct re- 
sults when applied to a correlation matrix. The general strategy 
is to estimate and test correlation structures in the context of 
models for covariance matrices (Krane & McDonald, 1978): 

= ~(~) = Ap(O)A, (21) 

where the diagonal matrix A contains scaling terms fii and the 
correlation structure P = P(e) satisfies the restrictions 

diag (P) = I. (22) 

The parameter vector of the covariance structure then is 3,' = 
(~ ,  . . . ,  ,~, 0% 

Two general approaches have been used to estimate the corre- 
lation structure P(0) while ensuring that Restriction 22 holds. 
In the first case, reparameterizations of the form 

Z = A{I'('r) + I - diag [I'(,y)]}A (23) 

can be considered. For example, with factor analysis, one writes 

= A[AOA' + I - diag (AOA')]A 

(Browne & du Toit, 1987, section 6.2; Jennrich, 1974, section 
1). The uniquenesses corresponding to Equation 1 are implic- 
itly given by the difference • = I - diag (AOA'). Alternatively, 
Equation 22 can be imposed directly using numerical methods 
(Bentler & Lee, 1983; Browne, 1982). Then A requires estimat- 
ing p additional parameters, but imposing the restriction of  
Equation 22 numerically provides p additional constraints, so 
that the degrees of freedom of  the model are actually unaffected. 
Although Model 23 appears to be the easier of  the two ap- 
proaches to implement in a computer program, Heywood cases 
will occur whenever elements of diag [I'('r)] are greater than 
unity. If Restriction 22 is imposed numerically, Heywood cases 
can also occur, although a method for imposing inequality con- 
straints could be applied to restrict all ~i >_ 0. 

Model 21 has the important property that it is scale invariant. 
It also has the property that the parameters in the correlation 
structure P(#) are scale-free. Therefore all of  the problems re- 
viewed in this article can be avoided, except for the matter of  
standard errors for A. Because A contains scaling terms, how- 
ever, it is generally uninteresting to estimate these parameters 
without information about the variances of the measures. The 
overriding motivation for studying correlation structures ap- 
pears to be the problem ofinterpretion. Therefore an advantage 
of  structures such as Model 21 is that they may be applied to 
covariance matrices but retain the feature that the parameter 
matrices of  the function P(#) are in the standardized metric of 
correlations. 

One drawback with this approach is that computer programs 
to estimate Model 21 under Restriction 22 are not yet widely 
available. LISREL, 2 in particular, cannot yet handle the restric- 
tions needed for factor analysis, namely, 

f f 
~ Xi jXik~jk  -[- Vii  ~ 1, 

j= l kffi l 

for i = 1, • •. ,  p. Nonetheless, two computer programs, BMDP's 
PAR (Lee & Jennrich, 1984) and COSAN (McDonald, 1980), 
can be used to fit Model 23. Browne and du Toit's (1987) AUFIT 

can impose Restriction 22, either directly using numerical 
methods or by the reparameterization of  Equation 23. 

A reviewer of this article suggested that Model 21 in conjunc- 
tion with Restriction 22 be generally recommended in covari- 
ance structure analysis, especially for the analysis of  correlation 
structures. Although this approach is frequently useful, it may 
not be optimal, or even desirable, for all models. In the first case, 
imposing Restriction 22 as a nonlinear numerical constraint 
adds appreciably to the computing costs, especially when the 
model is complex or when a large number of  variables is in- 
volved. Similarly, it can be time-consuming to operationalize 
Model 23 in special-purpose computer programs if many 
models are to be studied. In these cases, scale-invariant models 
are attractive, for they can be estimated with programs that em- 
ploy traditional algorithms. 

A second limitation of Model 23 or 21 with Restriction 22 as 
general models for covariance structures is that these formula- 
tions simply will not always be appropriate. Consider, for exam- 
ple, a model for multi trait-multimethod covariance matrices 
(Browne, 1984): 

Z = A(Pm ® Pt + D~)A, (24) 

where Pm and Pt represent correlation matrices among method 
and trait common scores, respectively, and Du 2 and A are diago- 
nal. The direct product between the component correlation ma- 
trices, P,, ® Pt, itself yields a correlation matrix, so that diag 
(P,, ® Pt) = I. Elements of D~ are nonnegative, however, so diag- 
onal elements ofP,~ ® Pt + I)2, in general are greater than unity. 
Therefore Model 24 is not a specialization of Model 21 or 23. 
Model 24 is scale invariant, and the parameters Pro, Pt, and D~ 
are scale-free, so a standard algorithm can be used to solve for 
the parameters. 

Several other models have been used that also are fundamen- 
tally inappropriate as correlation structures. Examples are par- 
allel or tau-equivalent test models and certain longitudinal or 
growth models. Because these structures specify functions of  
variances, there is no way to translate them into corresponding 
correlation structures. 

Discuss ion  

Statistical theory for the analysis of covariance structures, as 
well as the computer programs that implement them, has been 
most completely developed for applications to a sample covari- 
ance matrix. When variables have quite different variances, 
however, it is useful, at times even necessary, to standardize the 
variables and to carry out the analysis on the matrix of  sample 
correlations to facilitate comparisons among the coefficients as- 
sociated with different tests. In psychology, this is common 

2 A reviewer also recommended a LISREL reparameterization scheme 
suggested by Rindskopf (1984) for factor analysis models to constrain 
the diagonal of a reproduced covariance matrix to unities. This method 
is clever but limited in practice, because it applies only to the special 
case of models in which each variable is regressed on a single factor. 
Even in these cases, the standard errors for uniquenesses are not avail- 
able. Models of this kind are scale invariant, however, and generally can 
be handled by rescaling as described in the text. 
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practice when fitting the regression model or using traditional 
methods of  factor analysis. But it is unjustifiable as a general 
strategy for analyzing structural models, because it often leads 
to inferential and interpretive errors. By analyzing a correlation 
matrix, one may (a) implicitly alter the model being studied, (b) 
produce a value of  the omnibus  test statistic that is incorrect, 
or (c) report standard errors that are quite discrepant from the 
correct values. In comparison with the analysis of  a covariance 
matrix, the corresponding analysis of a correlation matrix 
should be viewed as a special case, one that always requires jus- 
tification. 

With scale-invariant models, Errors a and b cannot  occur. 
Even when a model is scale invariant,  Error c will occur for 
all parameters that are not  scale-free and that have not  been 
estimated by special procedures developed for this circum- 
stance. 

Recent research has led to general procedures that are appro- 
priate for analyzing virtually any structural model with a ma- 
trix of correlations (Browne & du Toit, 1987). Computer  pro- 
grams for this method have not  yet been widely distributed, 
however, and the number  of applications of  the method is small. 

It may be useful to provide general guidelines for scale-invari° 
ant factor analysis models. More complete discussions of spe- 
cific models are given in Browne (I 982), Krane  and McDonald 
(1978), and Swaminathan and Algina (1978). It should be noted 
that defining a model to ensure that it is scale invariant  may 
interact with the model 's  identifiability. Prudence requires that 
each of these matters be investigated on a case-by-case basis. 

If the factor covariance matrix is constrained in I = diag (cI,), 
if,I, is unconstrained,  and if  only fixed values of zero are intro- 
duced to A, then one obtains a scale-invariant model. This class 
of  structures subsumes congeneric test models but  not  tau- 
equivalent or parallel test models. 

If  g'  is unconstrained,  and if ~ is also unconstrained so that 
diag (,I,) -~ I, then models with a single fixed nonzero element 
in each co lumn of  A are scale invariant.  Combining  both of 
these classes shows that many  models for latent variable regres- 
sion are scale invariant.  For example, if  latent independent  vari- 
ables are specified according to guidelines for the first class and 
latent dependent variables are determined according to the sec- 
ond class, then the resulting model is scale invariant  (e.g., Mar- 
uyama & McGarvey, 1980). 

Many factor analysis models are not  invariant  with respect 
to rescaling. For example, if the constraint  diag (,I,) = I is im- 
posed, and if additional fixed nonzero values are specified in / t ,  
then the model is not  scale invariant.  I f a  model imposes two or 
more nonzero fixed values in a single co lumn of  A, then it is 
not  scale invariant.  Similarly, if two or more elements are con- 
strained to be equal in one co lumn of / t ,  or if  two or more ele- 
ments are constrained to be equal in different co lumns of / t ,  or 
if two or more elements of  • are constrained to be equal, then 
the model is not  scale invariant.  
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