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Introduction

In this module, we examine the characteristics of some basic
discrete-time hazard models, and explore how they are fit to
data.

We address questions about the covariates of hazard and
survival. Some examples:

1 What factors are connected with early relapse after
treatment for alcoholism?

2 What coping strategies enable some sex offenders from
re-offending?

3 Is one preventive care strategy better than another for
preventing infection during dialysis?

4 Does choice of diet affect the likelihood of developing
cancer?
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Introduction

We attempt to answer questions like these by fitting survival
models to data. Our efforts will have much in common with
regression analysis.

1 We’ll fit a model, and then
2 Estimate its parameters and goodness of fit and
3 Decide whether perhaps another model would be better for

our data
4 If the current model seems reasonable, we’ll
5 Interpret the results in terms of our research questions and
6 Communicate our results in standard statistical terms
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An Example

Chapter 11 of Singer and Willett is built around the study
Capaldi, et al. (1996) on the grade of first heterosexual
intercourse for a sample of “at-risk” boys.

The key question we shall address is whether the survival time
is systematically related to the whether the boys lived with
both biological parents during their formative years.

The covariate, PT, is scored 1 for boys who experienced at least
one “parenting transition,” and 0 otherwise.
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Within-Group Plots

Within-Group Estimated Hazard Function

A first step in exploratory analysis is to examine the
within-sample estimated hazard function plots.

> library(survival)

> firstsex<-read.table("firstsex.csv", sep=",", header=T)

> ts0 <- survfit( Surv(time, 1-censor)~ 1, conf.type="none",

+ subset=(pt==0), data=firstsex)

> ts1 <- survfit( Surv(time, 1-censor)~ 1, conf.type="none",

+ subset=(pt==1), data=firstsex)

> h0<-ts0$n.event/ts0$n.risk

> h1<-ts1$n.event/ts1$n.risk

> plot(ts0$time, h0, type="l", ylab="Estimated Hazard probability",

+ xlab="Grade", ylim=c(0.0, 0.5), xlim=c(6, 12), col="red")

> par(new=T)

> plot(ts1$time, h1, type="l", ylab=" ", ylim=c(0.0, 0.5),

+ xlim=c(6, 12), xlab="", col="blue")

> legend(7,0.5, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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Within-Group Estimated Hazard Function
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Within-Group Plots

Within-Group Estimated Hazard Function

As we can clearly see from the hazard function plots,

1 The hazard function for both groups starts low and begins
to rise sharply at 8th grade

2 The hazard function for the PT=1 group is at a consistently
higher level than that of the PT=0 group
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Within-Group Plots

Within-Group Estimated Hazard Functions

We can examine the hazard and survival probabilities in life
tables separately by groups. Here is the table for PT=0:

> tab11.1.0<-cbind(time=ts0$time, nleft=ts0$n.risk, failed=ts0$n.event, hazard=h0, survival=ts0$surv)

> tab11.1.0

time nleft failed hazard survival

[1,] 7 72 2 0.02778 0.9722

[2,] 8 70 2 0.02857 0.9444

[3,] 9 68 8 0.11765 0.8333

[4,] 10 60 8 0.13333 0.7222

[5,] 11 52 10 0.19231 0.5833

[6,] 12 42 8 0.19048 0.4722

And here is the corresponding table for PT=1:

> tab11.1.1<-cbind(time=ts1$time, nleft=ts1$n.risk, failed=ts1$n.event, hazard=h1, survival=ts1$surv)

> tab11.1.1

time nleft failed hazard survival

[1,] 7 108 13 0.12037 0.8796

[2,] 8 95 5 0.05263 0.8333

[3,] 9 90 16 0.17778 0.6852

[4,] 10 74 21 0.28378 0.4907

[5,] 11 53 15 0.28302 0.3519

[6,] 12 38 18 0.47368 0.1852
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Within-Group Plots

Within-Group Estimated Survival Functions

The following code plots the estimated within-group survival
functions.

> plot(ts0$time, ts0$surv, type="l",

+ ylab="Estimated Survival Function",

+ xlab="Grade", ylim=c(0.0, 1.0), xlim=c(6, 12), col="red")

> par(new=T)

> plot(ts1$time, ts1$surv, type="l", ylab=" ", ylim=c(0.0, 1.0),

+ xlim=c(6, 12), xlab="", col="blue")

> abline(h=c(.5), lty=2)

> legend(6,0.2, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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Within-Group Plots

Combined Life Table

Here is the life table for the combined groups:

> tsall <- survfit( Surv(time, 1-censor)~ 1, conf.type="none",

+ data=firstsex)

> h<-tsall$n.event/tsall$n.risk

> tab11.1.all<-cbind(time=tsall$time, nleft=tsall$n.risk,

+ failed=tsall$n.event, hazard=h, survival=tsall$surv)

> tab11.1.all

time nleft failed hazard survival

[1,] 7 180 15 0.08333 0.9167

[2,] 8 165 7 0.04242 0.8778

[3,] 9 158 24 0.15190 0.7444

[4,] 10 134 29 0.21642 0.5833

[5,] 11 105 25 0.23810 0.4444

[6,] 12 80 26 0.32500 0.3000
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Logit-Based Models for the Hazard Function

The hazard data we just examined suggest a regression model.
However, probability is bounded between 0 and 1, a fact that,
in practice, generates lots of problems (which is why we have
logistic regression).

The odds of an event X are defined as

Odds(X ) =
Pr(X )

1− Pr(X )
(1)

When we convert probabilities to odds, we convert
monotonically to a scale that ranges from 0 to infinity, with
odds of 1 corresponding to a probability of 0.50.
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Plotting on the Odds Scale

Here is code for calculating and displaying the hazard function
on an odds scale:

> odds0<-h0/(1-h0)

> odds1<-h1/(1-h1)

> logith0<-log(odds0)

> logith1<-log(odds1)

> plot(ts0$time, odds0, type="l", ylab="Estimated Odds",

+ xlab="Grade",ylim=c(0,1), xlim=c(6, 12), col="red")

> par(new=T)

> plot(ts1$time, odds1, type="l", ylab=" ", ylim=c(0, 1),

+ xlim=c(6, 12), xlab="", col="blue")

> legend(6,0.6, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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Plotting on the Logit Scale

The odds function has some properties that are considered
liabilities by some authors (see, e.g., Singer and Willett, p.
365). For example,

1 The odds function is bounded below by 0
2 The odds scale is asymmetric, in that similar differences in

odds can amount to very dissimilar differences in
corresponding hazard probabilities.

The log odds, or logit transformation, defined as

logit p = log
p

1− p
(2)

tends to eliminate or reduce these problems. Note that the logit
function is invertible, i.e.,

p =
1

1 + exp(− logit p)
(3)
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Plotting on the Logit Scale

The code below creates the hazard plots on the logit scale,
using the logits that have already been calculated in the code
on a previous slide.

> plot(ts0$time, logith0, type="l", ylab="Estimated Logit",

+ xlab="Grade", ylim=c(-4, 0), xlim=c(6, 12), col="red")

> par(new=T)

> plot(ts1$time, logith1, type="l", ylab=" ", ylim=c(-4, 0),

+ xlim=c(6, 12), xlab="", col="blue")

> legend(6,0, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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A Discrete-Time Hazard Model

Let D contain the unit-coded time variables for the time
periods assessed in the study. For an observation at time j ,
Dij = 1 and Dij = 0 for a time k where k 6= j . Let X contain
the values of the covariates that might predict hazard function
differences, and let α and B contain regression coefficients. The
model for person i is

logith i = D iα + X iβ (4)
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Interpreting the Model

In the preceding model, suppose that there is only one covariate
X and that it is dichotomous, scored 0 or 1. If X = 0, then the
vector α contains the values of logith , which may easily be
transformed back to hazard probabilities using Equation 3.
Singer and Willett refer to this as the “baseline” model.

What happens in the case where X = 1 and is time-invariant?
In that case, then logith = α + β. That is, at each point in
time, the logit (i.e, log-odds) of the baseline model have the
same constant added to them. What does this imply about the
ratio of the hazard odds when X = 1 relative to the hazard
odds when X = 0? (C.P.)
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Proportional Hazard Odds

Let’s work through step-by-step. Since when X = 1, we have, at
time j , log odds1 = αj + β, and when X = 0, we have

log odds0 = αj , we have log
(
odds1
odds0

)
= log odds1 − log odds0 = β.

Hence
odds1
odds0

= expβ (5)

In other words, the hazard odds when X = 1 are proportional
at every time period to those when X = 0, and the constant of
proportionality is expβ. Note that, when β is close to 0, expβ
is close in value to 1 + β, and so β is close to the proportional
increase in the odds.

For example, if β = .05, eβ = 1.0513, so the actual percentage
increase is 5.1%, but 5% is a reasonably close approximation.

James H. Steiger Basic Discrete-Time Models



Introduction
An Example

Preliminary Analyses
Logit-Based Models for the Hazard Function

A Discrete-Time Hazard Model
Fitting the Discrete-Time Survival Model

Deviance-Based Hypothesis Tests
Wald Z and χ2 Tests

Asymptotic Confidence Intervals
Computing and Plotting a Fitted Model

Model A – Baseline
Model B – Baseline + PT
Model C – Baseline + PAS
Model D – Baseline + PT + PAS

Fitting the Model with Maximum Likelihood Estimation

Singer and Willett outline the procedure for maximum
likelihood estimation on pages 381–384. We can use the R glm

function to fit the model, using the person- period version of the
data set.

> firstsex.pp<-read.table("firstsex_pp.csv",

+ sep=",", header=T)
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Fitting the Model with Maximum Likelihood Estimation

The first “baseline” model includes only the time period. Note
that we use logistic regression with no intercept.

> modelA<-glm(event~factor(period) - 1,

+ family="binomial", data=firstsex.pp)
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Fitting the Model with Maximum Likelihood Estimation

> summary(modelA)

Call:

glm(formula = event ~ factor(period) - 1, family = "binomial",

data = firstsex.pp)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.887 -0.698 -0.417 -0.294 2.514

Coefficients:

Estimate Std. Error z value Pr(>|z|)

factor(period)7 -2.398 0.270 -8.89 < 2e-16 ***

factor(period)8 -3.117 0.386 -8.07 7.0e-16 ***

factor(period)9 -1.720 0.222 -7.76 8.6e-15 ***

factor(period)10 -1.287 0.210 -6.13 8.6e-10 ***

factor(period)11 -1.163 0.229 -5.08 3.8e-07 ***

factor(period)12 -0.731 0.239 -3.06 0.0022 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1139.53 on 822 degrees of freedom

Residual deviance: 651.96 on 816 degrees of freedom

AIC: 664

Number of Fisher Scoring iterations: 5
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Adding PT as a Predictor

Model B adds PT as a predictor.

> modelB<-glm(event~factor(period) + pt - 1,

+ family="binomial", data=firstsex.pp)
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Adding PT as a Predictor

> summary(modelB)

Call:

glm(formula = event ~ factor(period) + pt - 1, family = "binomial",

data = firstsex.pp)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.051 -0.662 -0.441 -0.313 2.729

Coefficients:

Estimate Std. Error z value Pr(>|z|)

factor(period)7 -2.994 0.318 -9.43 < 2e-16 ***

factor(period)8 -3.700 0.420 -8.80 < 2e-16 ***

factor(period)9 -2.281 0.272 -8.37 < 2e-16 ***

factor(period)10 -1.823 0.258 -7.05 1.8e-12 ***

factor(period)11 -1.654 0.269 -6.15 7.9e-10 ***

factor(period)12 -1.179 0.272 -4.34 1.4e-05 ***

pt 0.874 0.217 4.02 5.9e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1139.53 on 822 degrees of freedom

Residual deviance: 634.66 on 815 degrees of freedom

AIC: 648.7

Number of Fisher Scoring iterations: 5
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Adding PAS to the Baseline Model

Model C adds PAS to the baseline model.

> modelC<-glm(event~factor(period) + pas - 1,

+ family="binomial", data=firstsex.pp)
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Adding PAS to the Baseline Model

> summary(modelC)

Call:

glm(formula = event ~ factor(period) + pas - 1, family = "binomial",

data = firstsex.pp)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.155 -0.636 -0.447 -0.272 2.683

Coefficients:

Estimate Std. Error z value Pr(>|z|)

factor(period)7 -2.465 0.274 -8.99 < 2e-16 ***

factor(period)8 -3.159 0.389 -8.12 4.6e-16 ***

factor(period)9 -1.730 0.224 -7.70 1.3e-14 ***

factor(period)10 -1.285 0.213 -6.04 1.5e-09 ***

factor(period)11 -1.136 0.232 -4.89 1.0e-06 ***

factor(period)12 -0.642 0.243 -2.64 0.00819 **

pas 0.443 0.114 3.89 0.00010 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1139.53 on 822 degrees of freedom

Residual deviance: 637.17 on 815 degrees of freedom

AIC: 651.2

Number of Fisher Scoring iterations: 5
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Model D – The Full Model

This model adds both PT and PAS as predictors.

> modelD<-glm(event~factor(period) + pt +

+ pas - 1, family="binomial", data=firstsex.pp)
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Model A – Baseline
Model B – Baseline + PT
Model C – Baseline + PAS
Model D – Baseline + PT + PAS

Model D – The Full Model

> summary(modelD)

Call:

glm(formula = event ~ factor(period) + pt + pas - 1, family = "binomial",

data = firstsex.pp)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.179 -0.618 -0.434 -0.284 2.786

Coefficients:

Estimate Std. Error z value Pr(>|z|)

factor(period)7 -2.893 0.321 -9.02 < 2e-16 ***

factor(period)8 -3.585 0.423 -8.47 < 2e-16 ***

factor(period)9 -2.150 0.277 -7.75 9.2e-15 ***

factor(period)10 -1.693 0.265 -6.40 1.6e-10 ***

factor(period)11 -1.518 0.276 -5.50 3.7e-08 ***

factor(period)12 -1.010 0.281 -3.59 0.00033 ***

pt 0.661 0.237 2.79 0.00527 **

pas 0.296 0.125 2.36 0.01809 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1139.53 on 822 degrees of freedom

Residual deviance: 629.15 on 814 degrees of freedom

AIC: 645.1

Number of Fisher Scoring iterations: 5
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Deviance-Based Hypothesis Tests

Since Models A,B,C,D are nested (in the sense that A is nested
in B and C, and B and C are nested in D), we can test the
significance of the coefficients for PT, and PAS, and then test
whether PT adds in addition to PAS, and whether PAS adds in
addition to PT, with a series of Deviance tests. Each deviance
tests compares the deviance for the more restricted model (the
one with fewer parameters) with the deviance for the less
restricted model it is nested within. The test for significance of
the parameter that differs between the two models is a
chi-square with one degree of freedom.
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Deviance-Based Hypothesis Tests

For example, to test whether PT adds to the baseline model, we
can use the anova command as follows:

> anova(modelA,modelB)

Analysis of Deviance Table

Model 1: event ~ factor(period) - 1

Model 2: event ~ factor(period) + pt - 1

Resid. Df Resid. Dev Df Deviance

1 816 652

2 815 635 1 17.3
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Deviance-Based Hypothesis Tests

To test whether PAS adds to the baseline model, we have

> anova(modelA,modelC)

Analysis of Deviance Table

Model 1: event ~ factor(period) - 1

Model 2: event ~ factor(period) + pas - 1

Resid. Df Resid. Dev Df Deviance

1 816 652

2 815 637 1 14.8
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Deviance-Based Hypothesis Tests

To test whether PAS adds to the baseline model once PT has
been included, we have

> anova(modelB,modelD)

Analysis of Deviance Table

Model 1: event ~ factor(period) + pt - 1

Model 2: event ~ factor(period) + pt + pas - 1

Resid. Df Resid. Dev Df Deviance

1 815 635

2 814 629 1 5.51
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Deviance-Based Hypothesis Tests

To test whether PT adds to the baseline model once PAS has
been included, we have

> anova(modelC,modelD)

Analysis of Deviance Table

Model 1: event ~ factor(period) + pas - 1

Model 2: event ~ factor(period) + pt + pas - 1

Resid. Df Resid. Dev Df Deviance

1 815 637

2 814 629 1 8.02
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Simultaneous Deviance Tests for Groups of Parameters

We can test whether two parameters together produce an
improvement by comparing the model with both parameters
against the baseline with neither parameter. The resulting χ2

statistic has two degrees of freedom.

> anova(modelA,modelD)

Analysis of Deviance Table

Model 1: event ~ factor(period) - 1

Model 2: event ~ factor(period) + pt + pas - 1

Resid. Df Resid. Dev Df Deviance

1 816 652

2 814 629 2 22.8
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Wald Tests

Wald tests in their simplest form compare a parameter estimate
with an estimated standard error of the estimate, thereby
yielding an asymptotic Z -statistic for testing the hypothesis
that the parameter is zero.

So, for example, from the output for model B, we see an
estimate of 0.8736 for the PT parameter, and an estimated
standard error of 0.2174. The asymptotic Z statistic is thus
4.018, and the square of this statistic, 16.15, is a χ2 with 1
degree of freedom, and can thus be compared directly with the
corresponding deviance statistic.

The deviance and Wald statistics are reported in Table 11.3.
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Asymptotic Confidence Intervals for Parameters

In keeping with more modern views of statistical interpretation,
a confidence interval for a parameter may be considerably more
useful than its p-value. As usual, we construct these
asymptotically normal intervals as

β̂ ± Z ∗
1−α/2σ̂(β̂) (6)

where Z ∗ is an appropriate critical value (e.g., 1.96 for a 95%
confidence interval) from the standard normal distribution, and
σ̂(β̂) is the estimated standard error of the extimate β̂.
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Asymptotic Confidence Intervals for Parameters

For example, in Table 11.3, we see that, in Model B, the
parameter estimate for PT is 0.8736 and the estimated standard
error is 0.2174. So the 95% confidence interval is

0.8736 ± 1.96× 0.2174

0.8736 ± 0.4261

So the confidence interval ranges from 0.4475 to 1.2997.
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Asymptotic Confidence Intervals for Odds Ratios

As we saw earlier, in the Discrete-Time survival model, a
parameter value of β corresponds to an odds ratio of exp(β).
Since the parameter and odds ratio are monotonically related, a
confidence interval on one may be transformed directly into a
confidence interval on the other.

Hence, in the Model B example, we might construct a 95%
confidence interval on the odds-ratio for PT as ranging from
exp(0.4475) = 1.5644 to exp(1.2997) = 3.6682.

Note that an odds ratio of 1 corresponds to no effect, and the
fact that the confidence interval excludes 1 indicates that the
two-sided test for no effect is rejected at the .05 level.
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Computing and Plotting a Fitted Model

Often, rather than plotting the hazard or survival function
directly from the life table, we plot the fitted model instead.
This involves some straightforward computations from the
estimated model coefficients.
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Computing and Plotting a Fitted Model

Recall that the basic model as shown in Equation 4 is
logith i = D iα + X iβ. The logit function is invertible, and so

h i = logit−1(D iα + X iβ) (7)

At time j , the fitted model therefore has hazard
logit−1(αj +

∑
k Xikβk ), which is equal to

1

1 + exp−(αj +
∑

k Xikβk )
(8)

The fitted values of the hazard for a given model may then be
converted into fitted values for the survival function by use of
the product-limit formula.
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Computing the Hazard Function – Model A

Here is an example computing the fitted odds and fitted hazard,
using the output from Model A. Notice that we define a
function, inverse.logit, that will be useful in subsequent
calculations.

> inverse.logit <- function(x){

+ return(1/(1+exp(-x)))

+ }

> modelA<-glm(event~factor(period) - 1, family="binomial", data=firstsex.pp)

> col0<-c(7:12)

> col1<-c("D7", "D8", "D9", "D10", "D11", "D12")

> col2<-exp(modelA$coefficients)

> col3<- inverse.logit(modelA$coefficients)

> tab11.4<-data.frame(time=col0, Predictor=col1, parameter=modelA$coefficients,

+ fitted.odds=col2, fitted.hazard=col3, row.names=NULL)

James H. Steiger Basic Discrete-Time Models



Introduction
An Example

Preliminary Analyses
Logit-Based Models for the Hazard Function

A Discrete-Time Hazard Model
Fitting the Discrete-Time Survival Model

Deviance-Based Hypothesis Tests
Wald Z and χ2 Tests

Asymptotic Confidence Intervals
Computing and Plotting a Fitted Model

Computing and Plotting the Hazard Function

Computing the Hazard Function – Model A

> tab11.4

time Predictor parameter fitted.odds fitted.hazard

1 7 D7 -2.3979 0.09091 0.08333

2 8 D8 -3.1167 0.04430 0.04242

3 9 D9 -1.7198 0.17910 0.15190

4 10 D10 -1.2867 0.27619 0.21642

5 11 D11 -1.1632 0.31250 0.23810

6 12 D12 -0.7309 0.48148 0.32500
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Computing and Plotting the Hazard Function

Computing the Fitted Hazard and Survival Functions –
Model B

The next example is somewhat more ambitious. We calculate
the fitted values for logit hazard, hazard, and survival, for the
case where PT = 0 and PT = 1.

Note that, in this special case of a single dichotomous 0-1
variable, we have, as explained before, fitted values as
logit hj = αj + βPT , hj = logit−1(αj + βPT ), and
Sj = Sj−1(1− hj ), with S6 = 1.
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Computing the Fitted Hazard and Survival Functions –
Model B

Here is the code:

> modelB<-glm(event~factor(period) + pt - 1, family="binomial", data=firstsex.pp)

> t<-data.frame(hazard=modelB$fitted.values, time=firstsex.pp$period, pt=firstsex.pp$pt)

> t$logit<-log(t$hazard/(1-t$hazard))

> ta<-aggregate(t, list(pt=t$pt, time=t$time),mean)

> ta.0<-ta[ta$pt==0, ]

> ta.1<-ta[ta$pt==1, ]

> c1<-c(7:12)

> c2<-ta.0$logit

> c3<-ta.1$logit-ta.0$logit

> c4<-ta.0$logit

> c5<-ta.1$logit

> c6<-ta.0$hazard

> c7<-ta.1$hazard

> tab11.5<-data.frame(time=c1, alpha=c2, beta=c3, logit_0 = c4, logit_1= c5,

+ hazard_0 = c6, hazard_1 = c7)

> tab11.5$surv_0<-0

> tab11.5$surv_1<-0

> tab11.5$surv_0[1]<-1-tab11.5$hazard_0[1]

> tab11.5$surv_1[1]<-1-tab11.5$hazard_1[1]

> for(i in 2:6) {

+ tab11.5$surv_0[i] = tab11.5$surv_0[i-1]*(1-tab11.5$hazard_0[i])

+ tab11.5$surv_1[i] = tab11.5$surv_1[i-1]*(1-tab11.5$hazard_1[i])

+ }

James H. Steiger Basic Discrete-Time Models



Introduction
An Example

Preliminary Analyses
Logit-Based Models for the Hazard Function

A Discrete-Time Hazard Model
Fitting the Discrete-Time Survival Model

Deviance-Based Hypothesis Tests
Wald Z and χ2 Tests

Asymptotic Confidence Intervals
Computing and Plotting a Fitted Model

Computing and Plotting the Hazard Function

Computing the Fitted Hazard and Survival Functions –
Model B

> tab11.5

time alpha beta logit_0 logit_1 hazard_0 hazard_1 surv_0 surv_1

1 7 -2.994 0.8736 -2.994 -2.1207 0.04768 0.10710 0.9523 0.8929

2 8 -3.700 0.8736 -3.700 -2.8265 0.02412 0.05591 0.9293 0.8430

3 9 -2.281 0.8736 -2.281 -1.4075 0.09270 0.19663 0.8432 0.6772

4 10 -1.823 0.8736 -1.823 -0.9490 0.13912 0.27909 0.7259 0.4882

5 11 -1.654 0.8736 -1.654 -0.7806 0.16054 0.31419 0.6094 0.3348

6 12 -1.179 0.8736 -1.179 -0.3054 0.23522 0.42423 0.4660 0.1928
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Plotting the Fitted Hazard Function

> plot(tab11.5$time, tab11.5$hazard_0, type="l",

+ ylab="Fitted hazard", ylim=c(0, 0.5),

+ xlim=c(6, 12), xlab="", col="red")

> par(new=T)

> plot(tab11.5$time, tab11.5$hazard_1, type="l", ylab="",

+ ylim=c(0, 0.5), xlim=c(6, 12), xlab="", col="blue")

> legend(7,0.5, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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Plotting the Fitted Hazard Function

6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

F
itt

ed
 h

az
ar

d

6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

One or more parenting transitions (PT=1)
No parenting transitions (PT=0)

James H. Steiger Basic Discrete-Time Models



Introduction
An Example

Preliminary Analyses
Logit-Based Models for the Hazard Function

A Discrete-Time Hazard Model
Fitting the Discrete-Time Survival Model

Deviance-Based Hypothesis Tests
Wald Z and χ2 Tests

Asymptotic Confidence Intervals
Computing and Plotting a Fitted Model

Computing and Plotting the Hazard Function

Plotting the Fitted Survival Function

> plot(tab11.5$time, tab11.5$surv_0, type="l",

+ ylab="Fitted survival probability",

+ ylim=c(0, 1), xlim=c(6, 12), xlab="", col="red")

> par(new=T)

> plot(tab11.5$time, tab11.5$surv_1, type="l", ylab="", ylim=c(0,1),

+ xlim=c(6, 12), xlab="", col="blue")

> abline(h=c(.5), lty=2)

> legend(7,0.2, c("One or more parenting transitions (PT=1)",

+ "No parenting transitions (PT=0)"),lty=1,col=c("blue","red"))
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Plotting the Fitted Survival Function

6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
itt

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

One or more parenting transitions (PT=1)
No parenting transitions (PT=0)

James H. Steiger Basic Discrete-Time Models



Introduction
An Example

Preliminary Analyses
Logit-Based Models for the Hazard Function

A Discrete-Time Hazard Model
Fitting the Discrete-Time Survival Model

Deviance-Based Hypothesis Tests
Wald Z and χ2 Tests

Asymptotic Confidence Intervals
Computing and Plotting a Fitted Model

Computing and Plotting the Hazard Function

Plotting the Fitted Hazard – Model D

> modelD<-glm(event~factor(period) + pt + pas - 1, family="binomial", data=firstsex.pp)

> coeff<-data.frame(modelD$coefficients)

> myt<-c(1:6)

> h0_pas1<-c(1:6)

> h0_pas0<-c(1:6)

> h0_pasn1<-c(1:6)

> h1_pas1<-c(1:6)

> h1_pas0<-c(1:6)

> h1_pasn1<-c(1:6)

> for(i in 1:6) {

+ myt[i]<-i+6

+ h0_pas1[i]<-1/(1+ exp(-(coeff[i,] + coeff[8,])))

+ h0_pas0[i]<-1/(1+ exp(-coeff[i,]))

+ h0_pasn1[i]<-1/(1+ exp(-(coeff[i,] - coeff[8,])))

+ h1_pas1[i]<-1/(1+ exp(-(coeff[i,] + coeff[8,] + coeff[7,])))

+ h1_pas0[i]<-1/(1+ exp(-(coeff[i,] + coeff[7,])))

+ h1_pasn1[i]<-1/(1+ exp(-(coeff[i,] - coeff[8,] + coeff[7,])))

+ }

> f<-cbind(h0_pas1,h0_pas0,h0_pasn1, h1_pas1,h1_pas0,h1_pasn1)

> matplot(myt, f, type="l", ylab="Fitted hazard", ylim=c(0, 0.5), xlim=c(6, 12),

+ xlab="Grade", col=1:6, lty=1:6)

> legend(6, .5, c("PT=0 pas=+1", "PT=0 pas=0", "PT=0 pas=-1",

+ "PT=1 pas=+1", "PT=1 pas=0", "PT=1 pas=-1"),

+ col=1:6, lty=1:6, pch = "*",

+ ncol =3, cex = 1)
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Plotting the Fitted Hazard – Model D
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Plotting the Fitted Survivor Function – Model D

> surv0_pas1<-c(1:6)

> surv0_pas0<-c(1:6)

> surv0_pasn1<-c(1:6)

> surv1_pas1<-c(1:6)

> surv1_pas0<-c(1:6)

> surv1_pasn1<-c(1:6)

> surv0_pas1[1]<-1-h0_pas1[1]

> surv0_pas0<-1-h0_pas0[1]

> surv0_pasn1<-1-h0_pasn1[1]

> surv1_pas1<-1-h1_pas1[1]

> surv1_pas0<-1-h1_pas1[1]

> surv1_pasn1<-1-h1_pas1[1]

> for(i in 2:6) {

+ surv0_pas1[i] = surv0_pas1[i-1]*(1-h0_pas1[i])

+ surv0_pas0[i] = surv0_pas0[i-1]*(1-h0_pas0[i])

+ surv0_pasn1[i] = surv0_pasn1[i-1]*(1-h0_pasn1[i])

+ surv1_pas1[i] = surv1_pas1[i-1]*(1-h1_pas1[i])

+ surv1_pas0[i] = surv1_pas0[i-1]*(1-h1_pas0[i])

+ surv1_pasn1[i] = surv1_pasn1[i-1]*(1-h1_pasn1[i])

+ }

> s<-cbind(surv0_pas1,surv0_pas0,surv0_pasn1,surv1_pas1,surv1_pas0,surv1_pasn1)

> matplot(myt, s, type="l", ylab="Fitted survival probability", ylim=c(0, 1), xlim=c(6, 12),

+ xlab="Grade", col=1:6, lty=1:6)

> abline(h=c(.5), lty=2)

> legend(6, .2, c("PT=0 pas=+1", "PT=0 pas=0", "PT=0 pas=-1",

+ "PT=1 pas=+1", "PT=1 pas=0", "PT=1 pas=-1"),

+ col=1:6, lty=1:6, pch = "*",

+ ncol =2, cex = 1)
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