Matrix Algebra in R - A Minimal Introduction

James H. Steiger
Department of Psychology and Human Development
Vanderbilt University

Multilevel Regression Modeling, 2009

Matrix Algebra in R

(1) Defining a Matrix in R

- Entering by Columns
- Entering by Rows
- Entering a Column or Row Vector
(2) Extracting Pieces of a Matrix
- Extracting Individual Elements
- Extracting a Row of a Matrix
- Extracting a Column of a Matrix
- Extracting Several Rows and/or Columns
(3) Combining Matrices
- Joining Rows
- Joining Columns
(4) Basic Matrix Operations
- Matrix Addition and Subtraction
- Scalar Multiplication
- Matrix Multiplication
- Matrix Transposition
- Matrix Inversion

Defining a Matrix in R Extracting Pieces of a Matrix Combining Matrices Basic Matrix Operations

Matrix Algebra in R

Preliminary Comments

- This is a very basic introduction
- For some more challenging basics, you might examine Chapter 5 of An Introduction to R, the manual available from the Help->PDF Manuals menu selection in the R program

Defining a Matrix in R Extracting Pieces of a Matrix Combining Matrices Basic Matrix Operations

Matrix Algebra in R

Preliminary Comments

- This is a very basic introduction
- For some more challenging basics, you might examine Chapter 5 of An Introduction to R, the manual available from the Help->PDF Manuals menu selection in the R
program

Matrix Algebra in R

Preliminary Comments

- This is a very basic introduction
- For some more challenging basics, you might examine Chapter 5 of $A n$ Introduction to R, the manual available from the Help->PDF Manuals menu selection in the R program

Defining a Matrix in R

Entering a Matrix

- Suppose you wish to enter, then view the following matrix \boldsymbol{A} in R

$$
\boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

- You would use the R commands:
$>\mathrm{A} \leftarrow \operatorname{matrix}(\mathrm{c}(1,3,2,4), 2,2)$
$>A$

$$
[, 1][, 2]
$$

[1,] 1 2
[2,] 34

- Note that the numbers are, by default, entered into the matrix columnwise, i.e., by column

Defining a Matrix in R

Entering a Matrix By Rows

- You can enter the numbers by row, simply by adding an optional input variable
- Here are the R commands:
$>\mathrm{A} \leftarrow$ matrix $(\mathrm{c}(1,2,3,4), 2,2$, byrow=TRUE)
$>\mathrm{A}$

	$[, 1]$	$[, 2]$
$[1]$,	1	2
$[2]$,	3	4

Entering a Column Vector

Entering a Column Vector

- To enter a $p \times 1$ column vector, simply enter a $p \times 1$ matrix $>\mathrm{a} \leftarrow$ matrix $(\mathrm{c}(1,2,3,4), 4,1)$ $>a$

$$
[, 1]
$$

[1,] 1
[2,] 2
[3,] 3
[4,] 4

- Row vectors are, likewise, entered as $1 \times q$ matrices

Extracting Individual Elements

Extracting Individual Elements

- Individual elements of a matrix are referred to by their subscripts
- For example, consider a matrix correlation matrix \boldsymbol{R} given below
- To extract element $R_{3,1}$, we simply request $\mathrm{R}[3,1]$

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

$>\mathbf{R}[3,1]$
[1] 0.3

Extracting a Row of a Matrix

Extracting a Row of a Matrix

- To get an entire row of a matrix, you name the row and leave out the column
- For example, in the matrix R below, to get the first row, just enter R[1,]

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

$>\mathrm{R}[1$,
[1] $1.0 \quad 0.4 \quad 0.3 \quad 0.3$

Extracting a Column of a Matrix

Extracting a Column of a Matrix

- To get an entire column of a matrix, you name the column and leave out the row
- For example, in the matrix R below, to get the first column, just enter $\mathrm{R}[, 1]$

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

$>\mathrm{R}[, 1]$
$\begin{array}{llllll}{[1]} & 1.0 & 0.4 & 0.3 & 0.3\end{array}$

Defining a Matrix in R

Extracting Several Rows and/or Columns

Example (Extracting Several Rows and/or Columns)
Examine the following examples to see how we can extract any specified range of rows and/or columns

	1	2	3	4
1	1.00	0.40	0.30	0.30
2	0.40	1.00	0.20	0.20
3	0.30	0.20	1.00	0.30
4	0.30	0.20	0.30	1.00

```
> R[1:3,]
[,1] [,2] [,3] [,4]
```



```
> R[1:3,2:4]
    [,1] [,2] [,3]
[1,] 0.4 0.3 0.3
```


Joining Rows

Joining Rows

- On occasion, we need to build up matrices from smaller parts
- You can combine several matrices with the same number of columns by joining them as rows, using the rbind() command
- Here is an example

Defining a Matrix in R Extracting Pieces of a Matrix Combining Matrices Basic Matrix Operations

Joining Rows

```
Example (Joining Rows)
>A}\leftarrow\mathrm{ matrix (c(1,3,3,9,6,5),2,3)
>B}\leftarrowmmatrix (c(9,8,8,2,9,0),2,3
>A
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 3 & 6 \\
{\([2]\),} & 3 & 9 & 5
\end{tabular}
> B
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 9 & 8 & 9 \\
{\([2]\),} & 8 & 2 & 0
\end{tabular}
> rbind(A,B)
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 3 & 6 \\
{\([2]\),} & 3 & 9 & 5 \\
{\([3]\),} & 9 & 8 & 9 \\
{\([4]\),} & 8 & 2 & 0
\end{tabular}
> rbind(B,A)
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 9 & 8 & 9 \\
{\([2]\),} & 8 & 2 & 0 \\
{\([3]\),} & 1 & 3 & 6 \\
{\([4]\),} & 3 & 9 & 5
\end{tabular}
```


Joining Columns

Joining Columns

- In similar fashion, you can combine several matrices with the same number of rows by joining them as columnss, using the cbind() command
- Here is an example

Defining a Matrix in R Extracting Pieces of a Matrix

Combining Matrices
Basic Matrix Operations

Joining Columns

```
Example (Joining Columns)
>A}\leftarrow matrix(c(1,3,3,9,6,5),2,3
>B}\leftarrowmmatrix (c(9,8,8,2,9,0),2,3
> A
lrr, [,1] [,2] [,3]
> B
lrr, [,1] [,2] [,3]
cbind(A,B)
\begin{tabular}{lrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} \\
{\([1]\),} & 1 & 3 & 6 & 9 & 8 & 9 \\
{\([2]\),} & 3 & 9 & 5 & 8 & 2 & 0
\end{tabular}
cbind(B,A)
\begin{tabular}{lrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} \\
{\([1]\),} & 9 & 8 & 9 & 1 & 3 & 6 \\
{\([2]\),} & 8 & 2 & 0 & 3 & 9 & 5
\end{tabular}
```


Matrix Addition and Subtraction

Adding or subtracting matrices is natural and straightforward, as the example below shows

Example

```
> A }\leftarrow\mathrm{ matrix (c(1,3,3,9),2,2)
> B}\leftarrow\mathrm{ matrix (c (9,8,8,2),2,2)
```

$>\mathrm{A}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	3	9

> B
[,1] [,2]
[1,] $9 \quad 8$
[2,] 8 2
$>A+B$

	$[, 1]$	$[, 2]$
$[1]$,	10	11
$[2]$,	11	11

$>A-B$

	$[, 1]$	$[, 2]$
$[1]$,	-8	-5
$[2]$,	-5	7

Scalar Multiplication

To multiply a matrix by a scalar, simply use the multiplication symbol * For example,

Example (Scalar Multiplication)

$>\mathrm{A}$

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	3	9
$>$	$3 * \mathrm{~A}$	

	$[, 1]$	$[, 2]$
$[1]$,	3	9
$[2]$,	9	27

Matrix Multiplication

Matrix multiplication uses the $\% * \%$ command

Example (Matrix		
> A		
	[,1]	[,2]
[1,]	1	3
[2,]	3	9
> B		
	[,1]	[,2]
[1,]	9	8
[2,]	8	2
$>\mathrm{A} \% * \% \mathrm{~B}$		
	[,1]	[,2]
[1,]	33	14
[2,]	99	42
> B \% $\%$ \% A		
[,1] [,2]		
[1,]	33	99
[2,]	14	42

Matrix Transposition

To transpose a matrix, use the t () command
Example (Transposing a matrix)
> A

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	6
$[2]$,	3	9	5

> B

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	9	8	9
$[2]$,	8	2	0

	[,1]	[,2]
[1,]	1	3
[2,]	3	9
[3,]	6	5
> t (B)		
	[,1]	[,2]
[1,]	9	8
[2,]	8	2
[3,]	9	

Matrix Inversion

Matrix Inversion

- To invert a square matrix, use the solve() command
- In the example below, we illustrate a common problem numbers that are really zero are only very close to zero due to rounding error
- When we compute the product $\boldsymbol{A} \boldsymbol{A}^{-1}$, we should get the identity matrix \boldsymbol{I}, but instead we see that the off-diagonal elements are not quite zero.
- To cure this problem, you can use the zapsmall() function

Matrix Inversion

```
Example (Inverting a matrix)
> A
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 9 & 9 \\
{\([2]\),} & 3 & 6 & 1 \\
{\([3]\),} & 3 & 5 & 8
\end{tabular}
> solve(A)
    [,1] [,2] [,3]
[1,] -0.24855491 0.1560694 0.2601156
[2,] 0.12138728 0.1098266 -0.1502890
[3,] 0.01734104 -0.1271676 0.1213873
> A %*% solve(A)
    [,1] [,2] [,3]
[1,] 1.000000e+00 2.775558e-17 -9.714451e-17
[2,] -4.510281e-17 1.000000e+00 -4.163336e-17
[3,] -2.775558e-17 -2.220446e-16 1.000000e+00
> zapsmall( A %*% solve(A) )
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 0 & 0 \\
{\([2]\),} & 0 & 1 & 0 \\
{\([3]\),} & 0 & 0 & 1
\end{tabular}
```

