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When We Don’t Need Simulation

As we have already seen, many situations in statistical inference
are easily handled by asymptotic normal theory. The
parameters under consideration have estimates that are either
unbiased or very close to being so, and formulas for the
standard errors allow us to construct confidence intervals
around these parameter estimates. If parameter estimate has a
distribution that is reasonably close to its asymptotic normality
at the sample size we are using, then the confidence interval
should perform well in the long run.

Multilevel Statistical Simulation – An Introduction



Introduction
Confidence Interval Estimation

Simulating Replicated Data
Comparing Simulated Replicated Data to Actual Data

When We Don’t Need Simulation
Why We Often Need Simulation
Basic Ways We Employ Simulation

Why We Often Need Simulation I

However, many situations, unfortunately, are not so simple. For
example:

1 The aymptotic distribution might be known, but
convergence to normality might be painfully slow

2 We may be interested in some complex function of the
parameters, and we haven’t got the statistical expertise to
derive even an asymptotic approximation to the
distribution of this function.
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Why We Often Need Simulation II

In situations like this, we often have a reasonable candidate for
the distribution of the basic data generation process, while at
the same time we cannot fathom the distribution of the
quantity we are interested in, because that quantity is a very
complex function of the data. In such cases, we may be able to
benefit substantially from the use of statistical simulation.
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Simulation in Statistical Inference I I

There are several ways that statistical simulation is commonly
employed:

Generation of confidence intervals by bootstrapping. In this
approach, the sampling distribution of the parameter estimate θ̂
is simulated by sampling, over and over, from the current data,
and (re-)computing parameter estimates θ̂∗ from each
“bootstrapped” sample. The variability shown by the many θ̂∗

values gives us a hint about the variability of the one estimate θ̂
we got from our data.
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Simulation in Statistical Inference II I

Monte Carlo investigations of the performance of statistical
procedures. In this approach, the data generation model and the
model parameters are specified, along with a sample size. Data
are generated according to the model. The statistical procedure
is applied to the data. This process is repeated many times, and
records are kept, allowing us to examine how the statistical
procedure performs at recovering the (known) true parameter
values.
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Simulation in Statistical Inference III I

Generation of estimated posterior distributions. In the Bayesian
framework, we enter the analysis process with a “prior
distribution” of the parameter, and emerge from the analysis
process with a “posterior distribution” that reflects our
knowledge after viewing the data. When we see a θ̂, we have to
remember that it is a point estimate. After seeing it, we would
be foolish to assume that θ = θ̂.
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Conventional Confidence Interval Estimation

When we think about confidence interval estimation, it is often
in the context of the mechanical procedure we employ when
normal theory pertains. That is, we take a parameter estimate
and add a fixed distance around it, approximately ±2 standard
errors.

There is a more general way of thinking about confidence
interval estimation, and that is, the confidence interval is a
range of values of the parameter for which the data cannot
reject the parameter.
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Conventional Confidence Interval Estimation

For example, consider the traditional confidence interval for the
sample mean when σ is known. Suppose we know that σ = 15
and N = 25 and we observe a sample mean of X • = 105.
Suppose we ask the question, what value of µ is far enough
away from 105 in the positive direction so that the current data
would barely reject it? We find that this value of µ is the one
that barely produces a Z -statistic of −1.96.

We can solve for this value of µ, and it is:

−1.96 =
X • − µ
σ/
√

N
=

105− µ
3

(1)

Rearranging, we get µ = 110.88.
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Conventional Confidence Interval Estimation

Of course, we are accustomed to obtaining the 110.88 from a
slightly different and more mechanical approach.

The point is, one notion of a confidence interval is that it is a
range of points that includes all values of the parameter that
would not be rejected by the data. This notion was advanced
by E.B. Wilson in the early 1900’s.

In many situations, the mechanical approach agrees with the
“zone of acceptability” approach, but in some simple situations,
the methods disagree.

As an example, Wilson described an alternative approach to
obtaining a confidence interval on a simple proportion.
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A Simple Interval for the Proportion

We can illustrate the traditional approach with a confidence
interval for a single binomial sample proportion.

Example (Traditional Confidence Interval for a Population
Proportion)

Suppose we obtain a sample proportion of p̂ = 0.65 based on a
sample size of N = 100.

The estimated standard error of this proportion is√
.65(1− .65)/100 = 0.0477.

The standard normal theory 95% confidence interval has
endpoints given by .65± (1.96)(0.0477), so our confidence
interval ranges from 0.5565 to 0.7435.
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A Simple Interval for the Proportion

An R function to compute this interval takes only a couple of
lines:

> simple.interval ← function(phat ,N,conf)
+ {
+ z ← qnorm(1-(1 -conf)/2)
+ dist ← z ∗ sqrt (phat∗(1-phat)/N)
+ lower = phat - dist
+ upper = phat + dist
+ return( l i s t ( lower= lower ,upper=upper))
+ }

> simple.interval(.65 ,100,.95)

$lower
[1] 0.5565157

$upper
[1] 0.7434843
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Wilson’s Interval

The approach in the preceding example ignores the fact that the
standard error is estimated from the same data used to estimate
the sample proportion. Wilson’s approach asks, which values of
p are barely far enough away from p̂ so that p̂ would reject
them. These points are the endpoints of the confidence interval.
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Wilson’s Interval

The Wilson approach requires us to solve the equations.

z =
p̂ − p√

p(1− p)/N
(2)

and
−z =

p̂ − p√
p(1− p)/N

(3)

Be careful to note that the denominator has p, not p̂.
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Wilson’s Interval

If we square both of the above equations, and simplify by
defining θ = z 2/N , we arrive at

(p̂ − p)2 = θp(1− p) (4)

This can be rearranged into a quadratic equation in p, which we
learned how to solve in high school algebra with a
(long-forgotten, C.P.?) simple if messy formula. The solution
can be expressed as

p =
1

1 + θ

(
p̂ + θ/2±

√
p̂(1− p̂)θ + θ2/4

)
(5)
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Wilson’s Interval

We can easily write an R function to implement this result.

> wilson.interval ← function(phat ,N,conf)
+ {
+ z ← qnorm(1 - (1-conf)/2)
+ theta ← z^2 /N
+ mult ← 1/(1+ theta)
+ dist ← sqrt (phat∗(1-phat)∗theta + theta^2 / 4)
+ upper = mult∗(phat + theta/2 + dist )
+ lower = mult∗(phat + theta/2 - dist )
+ return( l i s t ( lower= lower ,upper=upper))
+ }

> wilson.interval(.65 ,100,.95)

$lower
[1] 0.5525444

$upper
[1] 0.7363575
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Confidence Intervals through Simulation I

The methods discussed above both assume that the sample
distribution of the proportion is normal. While the distribution
is normal under a wide variety of circumstances, it can depart
substantially from normality when N is small or when either p
or 1− p approaches 1. An alternative approach to assuming
that the distribution of the estimate is normal is to simulate the
distribution.
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Confidence Intervals through Simulation II

This non-parametric approach involves:

1 Decide on a number of replications
2 For each replication

1 Take a random sample of size N , with replacement, from
the data

2 Compute the statistic
3 Save the results

3 When all the replications are complete, compute the .975
and .025 quantiles in the simulated distribution of estimates

4 These values are the endpoints of a 95% confidence interval
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Applying the Simulation Approach I

When the data are binary, the simulation procedure discussed
above amounts to sampling from the binomial distribution with
p set equal to the current sample proportion p̂.

(Note: Gelman & Hill sample from the normal distribution in
one of their examples, but this is not necessary with R.) This
involves much more computational effort than the methods
discussed previously.
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Applying the Simulation Approach II

> bootstrap.interval ← function(phat ,N,conf ,reps)
+ {
+ lower.p ← (1-conf)/2
+ upper.p ← 1 - lower.p
+ lower ← rep(NA, length(phat))
+ upper ← rep(NA, length(phat))
+ for (i in 1: length(phat))
+ {
+ x ← rbinom(reps ,N,phat[i])
+ lower[i] ← quantile (x,lower.p ,names=F)/N
+ upper[i] ← quantile (x,upper.p ,names=F)/N
+ }
+ return( l i s t ( lower= lower ,upper=upper))
+ }

> bootstrap.interval(.95 ,30,.95 ,1000)

$lower
[1] 0.8666667

$upper
[1] 1

The approach just illustrated is called “bootstrapping by the
percentile method.” Note that it will produce different results
when starting from a different seed, since random draws are
involved.
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Comparing the Intervals I

In many situations, the intervals will yield results very close to
each other.

However, suppose p̂ = .95 and N = 30. Then

> simple.interval(.95 ,30,.95)

$lower
[1] 0.8720108

$upper
[1] 1.027989

> bootstrap.interval(.95 ,30,.95 ,1000)

$lower
[1] 0.8666667

$upper
[1] 1
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Comparing the Intervals II

On the other hand,

> wilson.interval(.95 ,30,.95)

$lower
[1] 0.8094698

$upper
[1] 0.9883682

Now we see that there is a substantial difference between the
results. The question is, which confidence interval actually
performs better?
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Comparing the Intervals – Exact Calculation

There are a number of ways of characterizing the performance
of confidence intervals. For example, we can examine how close
the actual coverage probability is to the nominal value. In this
case, we can, rather easily, compute the exact coverage
probabilities for each interval, because R allows us to compute
exact probabilities from the binomial distribution, and N is
small. Therefore, we can

1 Compute every possible value of p̂
2 Determine the confidence interval for that value
3 See whether the confidence interval contains the true value

of p
4 Add up the probabilities for intervals that do cover p
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An R Function for Exact Calculation

In the R function below, we compute these coverage
probabilities for a given N ,p, and confidence level. (We ignore
the fact that the bootstrapped interval can vary according to
the number of replications and the random seed value.)

> actual.coverage.probability ← function(N,p,conf)
+ {
+ x ← 0:N
+ phat ← x/N
+ probs ← dbinom(x,N,p)
+ wilson ← wilson.interval(phat ,N,conf)
+ simple ← simple.interval(phat ,N,conf)
+ bootstrap ← bootstrap.interval(phat ,N,conf ,1000)
+ s← 0
+ w← 0
+ b← 0
+ results ← new.env()
+ for (i in 1:N+1) i f (( simple$lower[i] < p)&(simple$upper[i] >p)) s← s+probs[i]
+ for (i in 1:N+1) i f (( wilson$lower[i] < p)&(wilson$upper[i] >p)) w← w+probs[i]
+ for (i in 1:N+1) i f (( bootstrap$lower[i] < p)&(bootstrap$upper[i] >p)) b← b+probs[i]
+ return( l i s t (simple.coverage=s,wilson.coverage=w,bootstrap.coverage=b))
+ }

> actual.coverage.probability (30,.95 ,.95)

$simple.coverage
[1] 0.7820788

$wilson.coverage
[1] 0.9392284

$bootstrap.coverage
[1] 0.7820788

Note that the Wilson interval is close to the nominal coverage
level, while the traditional and bootstrap intervals perform
rather poorly.

Multilevel Statistical Simulation – An Introduction



Introduction
Confidence Interval Estimation

Simulating Replicated Data
Comparing Simulated Replicated Data to Actual Data

The Confidence Interval Concept
Simple Interval for a Proportion
Wilson’s Interval for a Proportion
Simulation Through Bootstrapping
Comparing the Intervals – Exact Method

Comparing the Intervals – Monte Carlo Approach

Suppose that we had not realized that the exact probabilities
were available to us. We could still get an excellent
approximation of the exact probabilities by Monte Carlo
simulation.

Monte Carlo simulation works as follows:

1 Choose your parameters
2 Choose a number of replications
3 For each replication:

1 Generate data according to the model and parameters
2 Calculate the test statistic or confidence interval
3 Keep track of performance, e.g., whether the test statistic

rejects, or whether the confidence interval includes the true
parameter

4 Display the results
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Monte Carlo Simulation – An Example Function

In the function below, we simulate 10,000 Monte Carlo
replications

> estimate.coverage.probability← function(N,p,conf ,reps ,seed.value =12345)
+ {
+ ## Set seed , create empty matrices to hold results

+ set .seed (seed.value)
+ results ← new.env()
+ coverage.wilson← 0
+ coverage.simple← 0
+ coverage.bootstrap← 0
+ ## Loop through the Monte Carlo replications

+ for (i in 1:reps)
+ {
+ ## create the simulated proportion

+ phat ← rbinom(1,N,p)/N
+ ## calculate the intervals

+ wilson ← wilson.interval(phat ,N,conf)
+ simple ← simple.interval(phat ,N,conf)
+ bootstrap ← bootstrap.interval(phat ,N,conf ,1000)
+ ## test for coverage , and update the count if successful

+ i f (( simple$lower < p)&(simple$upper >p))
+ coverage.simple ← coverage.simple + 1
+ i f (( wilson$lower < p)&(wilson$upper >p))
+ coverage.wilson ← coverage.wilson + 1
+ i f (( bootstrap$lower < p)&(bootstrap$upper >p))
+ coverage.bootstrap ← coverage.bootstrap + 1
+
+ }
+ ## convert results from count to probability

+ results$simple ← coverage.simple/reps
+ results$wilson ← coverage.wilson/reps
+ results$bootstrap ← coverage.bootstrap/reps
+ ## return as a named list

+ return( a s . l i s t (results ))
+ }
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Some Output

> estimate.coverage.probability (30,.95 ,.95 ,10000)

$bootstrap
[1] 0.7853

$wilson
[1] 0.9381

$simple
[1] 0.788
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Monte Carlo Simulation across Parameter Values

To get a better idea of the overall performance of the two
interval estimation methods when N = 30, we might examine
coverage rates as a function of p. With our functions written,
we are all set to go. We simply set up a vector of p values, and
store the results as we go.

Here is some code:

> ## set up empty vectors to hold 50 cases

> p ← matrix(NA ,50,1)
> wilson ← matrix(NA ,50,1)
> simple ← matrix(NA ,50,1)
> bootstrap ← matrix(NA ,50,1)
> ## step from .50 to .99 , saving results as we go

> for (i in 1:50)
+ {
+ p[i]← (49+i)/100
+ res ← actual.coverage.probability (30,p[i],.95)
+ wilson[i] ← res$wilson.coverage
+ simple[i] ← res$simple.coverage
+ bootstrap[i] ← res$bootstrap.coverage
+ }
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Monte Carlo Simulation – An Example

Below, we graph the results, presenting coverage probability as
a function of p. The performance advantage of the Wilson
interval is obvious.

> plot (p,wilson ,type="l", col ="blue",
+ ylim=c(.1,.99),xlab="Population Proportion p",
+ ylab="Actual Coverage Probability",main="Confidence Interval Performance (N = 30)")
> l i ne s (p,simple , col ="green")
> l i ne s (p,bootstrap , col ="orange")
> abline (.95 ,0,lty=2, col ="red")
> legend(.6,.6,c("Wilson Interval","Simple Interval","Bootstrap Interval"),
+ col =c("blue","green","orange"),lty=c(1,1,1))
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Why Do We Need Simulation?

The preceding examples demonstrate how we can use
simulation in a very simple situation, for two essentially
different purposes:

1 To help construct confidence intervals after having
observed data

2 To examine the performance of a test statistic or interval
estimation procedure in situations where the parameters
are “known”

Gelman & Hill refer to the first situation as predictive
simulation, and the second as fake data simulation.

The situations we examined, we didn’t actually need simulation
– better procedures were available.
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Why Do We Need Simulation?

Simulation is widely used because, in many situations, we don’t
have a quality procedure like the Wilson interval. Even when
procedures might exist somewhere in the statistical literature,
we might not be aware of them, or be able to make the
appropriate connection. In such situations, simulation can save
huge amounts of time while still providing very accurate
answers to our questions.
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Simulating Replicated Data

Gelman & Hill present a library function, sim, for simulating,
quickly and efficiently, a posterior distribution of parameter
values from a lm or glm fit object obtained from predicting y
from k predictors in X . The steps in their procedure are
described on page 143.

1 Compute β̂, Vβ = (X ′X )−1, and the estimated residual
variance σ̂2 using standard regression approaches.

2 Create n.sims random simulations of the coefficient vector
β and residual standard deviation σ based on normal
theory. That is, for each simulation, create

1 σ2 = σ̂2/(χ2
N−k/(N − k))

2 Given the random draw of σ2, simulate β from a
multivariate normal distribution with mean β̂ and
covariance matrix σ2Vβ

3 These distributions represent posterior distributions for the
parameters, representing our uncertainty about them. The
assumption is that the prior distribution is uninformative,
i.e., you have essentially no knowledge of the parameters
prior to gathering data.
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Well-Switching

In Gelman & Hill Chapter 5, pages 86–88, an example was
introduced involving well-switching behavior in Bangladesh.
The first model predicted the binary well-switching variable
from a single predictor, distance from the nearest well. Figures
are potentially confusing, as one involves coefficients obtained
from fitting distance in 100 meter units, the other portrays the
fit as a function of distance “in meters.” We begin by attaching
the wells data.

> wells ← read.table ("wells.dat", header = TRUE )
> attach(wells)

> dist100 ← dist

Next, we fit a logistic regression, using only the distance in
meters to the nearest known safe well. We expect, of course,
that the probability of switching will be inversely related to the
distance.

> fit.1 ← glm(switch ˜ dist , family = binomial ( l ink = "logit"))

> display (fit.1 , d ig i t s = 4)

glm(formula = switch ~ dist, family = binomial(link = "logit"))
coef.est coef.se

(Intercept) 0.6060 0.0603
dist -0.0062 0.0010
---
n = 3020, k = 2
residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)
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Well Switching II

Next, we simulate the posterior distribution of β0 and β1:

> sim.1 ← sim(fit.1 ,n.sims =1000)

We can plot the posterior bivariate distribution of the
coefficients:

> plot (sim.1$coef [,1],sim.1$coef [,2],xlab=expression(beta[0]),
+ ylab=expression(beta[1]))
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Picturing Uncertainty

Figure 7.6b demonstrates how you can plot uncertainty in the
prediction equation, by plotting curves corresponding to values
from the simulated posterior distribution. Each pair of values
corresponds to a plot line. Gelman & Hill plot 20 lines. I’ve put
the line from the original data in red.

> plot (dist ,switch ,pch=".")
> for (s in 1:20)
+ {
+ curve( inv log i t (sim.1$coef [s,1] + sim.1$coef [s,2]∗x),
+ col ="gray",add=TRUE)
+ }

> curve( inv log i t (fit.1$coef [1] + fit.1$coef [2]∗x), col ="red",add=TRUE)
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Simulating Predictive Uncertainty

On page 149, Gelman & Hill discuss simulating the uncertainty
that occurs when predicting new outcomes.

In this example, they start with the supposition that there is a
ñ × 2 matrix X̃ representing the values of ñ new households on
the predictor variable dist. This is what they do:

1 For each simulation, they predict the probability of
switching using the predictor values in X̃ and the β values
from the simulation

2 Then, for each simulation, they sample a binary (0,1)
random variable with probability equal to the probability
of switching from step (1).

3 So, after 1000 simulations, each new household has 1000
(0,1) results, each based on one value from the (simulated)
posterior distribution of β values

4 I am assuming that the proportion of 1’s in the resulting
columns is taken as an estimate of the switching
probability that reflects our posterior uncertainty in the
actual slope and intercept values from the original data

5 This final matrix also reflects the kinds of (very different)
actual result patterns that might emerge!

Try as I might, I cannot find Figure 7.7. Can anyone help me?
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Simulating Predictive Uncertainty – An Example

Here is some code:

> n.sims← 1000
> X.tilde ← matrix(c(1,1,1,1,1,1,1,1,1,1,120,45,109,54,33,254,81,190,101,65),10,2)
> n.tilde ← nrow(X.tilde)
> y.tilde ← array(NA,c(n.sims ,n.tilde ))
> for (s in 1: n.sims ){
+ p.tilde ← inv log i t (X.tilde %∗% sim.1$coef [s,])
+ y.tilde[s,] ← rbinom(n.tilde ,1,p.tilde)

+ }
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Simulating Predictive Uncertainty – Sample Output

> y.tilde [1:20 ,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 0 1 0 0 1 0 0
[2,] 1 1 1 0 1 0 1 1 0 1
[3,] 0 0 0 1 1 0 1 0 0 1
[4,] 1 1 1 0 1 0 1 0 0 1
[5,] 1 1 0 1 0 0 1 1 1 0
[6,] 1 1 0 1 1 0 0 0 1 0
[7,] 0 1 1 0 1 0 1 0 1 1
[8,] 1 1 0 0 1 0 0 1 0 0
[9,] 0 1 0 1 0 0 1 1 0 1
[10,] 1 0 1 0 1 0 1 1 1 0
[11,] 1 0 0 1 1 1 1 1 1 1
[12,] 1 1 0 0 1 0 1 1 0 1
[13,] 0 1 0 1 0 1 1 0 1 1
[14,] 0 0 0 0 1 0 0 0 1 1
[15,] 0 1 1 0 1 0 1 1 1 1
[16,] 0 0 0 1 0 0 1 0 0 1
[17,] 0 1 0 1 0 0 1 1 0 0
[18,] 0 0 0 0 0 0 1 0 0 0
[19,] 0 0 1 1 1 0 0 0 1 1
[20,] 0 0 1 0 1 0 0 0 0 1
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The Newcombe Light Data

As Gelman & Hill point out on page 159, a most fundamental
way to check fit of all aspects of a model is to compare
replicated data sets to the actual data. This example involves
Newcombe’s replicated measurements of estimated speed of
light.

> y ← scan ("lightspeed.dat", skip =4)
> # plot the data

> hist (y,breaks =40)
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The Newcombe Light Data – Simple Normal Fit

> # fit the normal model

> #(i.e. , regression with no predictors)

> lm.light ← lm (y ˜ 1)

> display (lm.light)

lm(formula = y ~ 1)
coef.est coef.se

(Intercept) 26.21 1.32
---
n = 66, k = 1
residual sd = 10.75, R-Squared = 0.00

> n ← length (y)
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The Newcombe Light Data – Replications

> n.sims ← 1000
> sim.light ← sim (lm.light , n.sims)
> y.rep ← array (NA, c(n.sims , n))
> for (s in 1: n.sims ){
+ y.rep[s,] ← rnorm (1, sim.light$coef [s], sim.light$sigma[s])
+ }
> # gather the minimum values from each sample

>
> test ← function (y){
+ min (y)
+ }
> test.rep ← rep (NA, n.sims)
> for (s in 1: n.sims ){
+ test.rep[s] ← test (y.rep[s,])

+ }
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The Newcombe Light Data – Replications

> # plot the histogram of test statistics of replications and of actual data

>
> hist (test.rep , xlim=range (test(y), test.rep ))

> l i ne s (rep (test(y), 2), c(0,n), col ="red")
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