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The computer program EzPATH, published in 1989, contained details of a confidence
interval approach to assessment of model fit in covariance structure analysis. The
EzPATH manual, and several published articles by myself and others have made
reference to the Steiger and Lind (1980) presentation as the primary source for several
influential ideas. As a result, I have received numerous requests for the handout which I
distributed at that presentation.

The original handout was produced, under considerable time pressure, with a TRS-80
microcomputer. The computer had only uppercase letters, and the handouts were printed
on a mimeograph. Perhaps the poor typographical quality contributed to the lukewarm
reception the presentation received. Perhaps I tried to say too much in 25 minutes.

To aid the modern reader, I have corrected 2 typographical errors in the original
handout. (John C. Lind was “John M. Lind” in the handout, and the second factor pattern
on page 3 was mistakenly labelled “p = 10, m = 2” in the original handout.) Two other
typographical omissions were pencilled in on most copies at the time of the original
presentation (a 1/2 was pencilled in in the equation for ��on the first page, an N was
placed next to S–1 in the 5th line from the bottom of page 6.)

I have also typeset the paper, using upper and lower case, subscripts and superscripts,
and changing a few Arabic letters to their obvious Greek counterparts. The actual
wording and mathematics are identical to the original version, as are the tables.

Please: remember that this was a handout to take the place of slides. It was not
designed to be a complete manuscript, but it contains enough detail to document clearly
the time frame for certain ideas. If you examine the handout, you will discover the
following things in this one presentation:

• The largest Monte Carlo study ever performed on statistically-based number of factors
rules. This was true then, and I believe it remains true now.

• The only Monte Carlo study to ever produce a coherent statistical model for
predicting the performance of the entire sequential LRT procedure. The model was
supported by two conjectures which I later was able to prove only with extensive help
from my mathematically more gifted colleagues Michael Browne and Alexander
Shapiro. One conjecture was that the noncentral chi-square approximation would
hold. The Monte Carlo evidence was extremely convincing, but I lacked a proof in
1980. Proving this required the “population drift” argument found in later papers by
Shapiro and others. The second conjecture involved approximating the covariance
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between adjacent sequential chi-square tests on the same data.

We were able to produce relevant proofs to tie up these loose ends only 5 years later
in the Psychometrika paper by Steiger, Shapiro, and Browne (1985).
In this study, I presented models for predicting the performance of number of factors
rules. I showed that these models worked, thus rendering future expensive Monte
Carlo studies essentially unnecessary.

• Introduction of the notion of estimating the noncentrality parameter as a way to assess
population fit.

• Introduction of the notion of noncentrality interval estimation as a way to resolve the
paradoxes inherent in hypothesis testing logic.

• Introduction of the idea of correcting for model parsimony via the RMS index. This
index is referred to as the RMSEA index by Browne and Cudeck.

The attached handout was distributed to all in attendance at the 1980 talk. Attendees
included Rod McDonald (who chaired the session), Peter Bentler, Norm Cliff and
Michael Browne (both of whom raised interesting questions during the talk), Joseph
Kruskal, and Jim Ramsay (who offered suggestions for refining the data presentation
afterward).

An updated presentation on the RMS index was given at the November 1987 meeting
of the Society of Multivariate Experimental Psychology in Vancouver. Attendees at that
presentation included Jeff Tanaka (who gave a presentation on fit indices), Chip
Reichardt (who responded very positively to the interval estimation idea), and Peter
Bentler.

The original handout of the 1980 talk is still available if you require a copy, but most
people will prefer to have this version.

I repeat -- Except for cosmetic changes documented above, this paper is identical to
the original handout.
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---------------------------------------------------------------------------------------------------------

The Criteria

a) Sequential Likelihood Ratio Test

Let p = the number of variables
m = the number of factors fitted
f = the maximum likelihood “badness of fit” function
N = the number of observations
k =  N – (2p + 11)/6 – 2m/3

Then U = kf is distributed asymptotically as a chi-square variate with
��= 1/2((p – m)2 – p – m) degrees of freedom.

The sequential LRT procedure selects as m*, the estimated number of factors, the
minimum m for which U is “not significant” at the .05 level.

b) Akaike's “AIC” criterion.

Set m* equal to that m for which
U – 2�   is a minimum.

c) Schwarz's “BIC” criterion.

Set m* equal to that m for which

U – (Ln N)��  is a minimum.

                                                
* Handout for a talk presented at the Annual Spring Meeting of the Psychometric Society, Iowa City, May
30, 1980.
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The Design

The Monte Carlo experiment was essentially a 4 way factorial design with the
following 4 factors:

a) Type of factor pattern (2 levels)

“Strong”
“Weak”

b) Size of correlation matrix (p) (2 levels)

p = 10
p = 15

c) Number of common factors (m) (3 levels)

“small”  (m = .2p)
“medium” (m = .4p)
“maximum” (m = the value for which � = 0, i.e., 6 when p =10,

     10 when p = 15)

d) Sample size (N) (5 levels)

N = 5p, 10p, 15p, 20p, 25p

Results are based on r = 50 replications when p =10, and r = 20 replications when p = 15.
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Examples of Population Factor Patterns

“Strong” (p =10, m = 2)

.83 .08

.74 .15

.76 –.12

.70 .18

.88 –.14
–.12 .65
–.09 .70

.06 .81

.13 .75

.08 .82

“Weak” (p = 10, m = 4, N = 250)

.0325 .4171 .6353 .5209

.0504 .4122 .7201 .3302

.8451 .0694 .1508 .0910

.3512 .4661 .5794 .1539

.3084 .2843 .6256 .2875

.5768 .3317 .0272 .3957

.4390 .3783 .3676 .2812

.4495 .3471 .0584 .4172

.0323 .1619 .3323 .5589

.0585 .3373 .5224 .0994
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Predicting the Performance of the Decision Criteria

a) The Basic Assumption

Let f * be the value of the maximum likelihood “badness of fit” function
calculated on the population correlation matrix for a given m. (Hence we might
call f * our “population badness of fit index.”) Let k, U be defined as on page 1.

Then we assume that U = kf is distributed approximately as a non-central
chi-square variate with v degrees of freedom and non-centrality parameter equal to
� = kf *.

b) Predicting Results for the Sequential LRT Procedure

1) Factor analyze the population correlation matrix to obtain f * values for
each m.

2) Using assumption (a) above, estimate the power of the likelihood ratio
test at m = 1, using, for example, the normal approximation to the non-central chi-
square distribution given in Abramowitz and Stegun's Handbook of Mathematical
Functions, Eq. 26.4.28.

3) Then P(m*= 1), the estimated probability that the nmber of factors will
be selected to be 1, is given by (1 – Power at m = 1), while P(m *>1), i.e., the
probability that a number of factors greater than 1 will be selected, is given by
(1– P(m *= 1), or, the power value itself.

4) Next, estimate power at m = 2, as above.
Then P(m*= 2) = (1 – Power at m = 2)(P(m*>1)).

5) Repeat the procedure at m =3, etc.

c) Predicting Results for AIC and BIC.

AIC and BIC criteria are based on relative values of U, and so
dependencies between values of U at adjacent levels of m are much more
important for these criteria than for the LRT procedure.

A consistent finding in the Monte Carlo research is that adjacent Chi-
square statistics correlate very highly, i.e., about .70 - .95. We incorporate a value
of .80 into our predictive model. (It should be noted that the overall predictions of
the models are fairly robust to minor variations of this value.
                                                       (...ctd. on next page)
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(...ctd from page 4)

In predicting these criteria, we assume that key decisions are made at
adjacent levels, i.e., that a decision to reject m = 2 in favor of m = 1 will not be
reversed at m = 3. (In fact, empirical data show that this is clearly not true, but that
reasonably good predictions can still be made under this highly simplifying
assumption.)

Procedure will be illustrated for AIC: generalization to BIC should be
immediately obvious.

1) Recall first that, in deciding between m = 1 and m = 2, the AIC criterion
chooses m* = 2 if U1 12− ν  is greater than U2 22− ν . (where U1  refers to the
value of U at m = 1, and ν1  is its associated degrees of freedom, etc.) Hence, we

estimate P(m*= 1) as P U U1 2 1 22− < −b g b gν ν . We estimate P(m*=1) as follows:

a) We estimate the means and variances of U1  and U2  from the non-
central chi-square assumption.

b) We then assume, for simplicity, that U U1 2−b g  is approximately

normal, with mean equal to the difference in the expected values of U1  and U2 ,
and variance equal to the sum of the variances of U1  and U2 , minus twice the
estimated covariance (which is calculated assuming a correlation of .80 between
U1  and U2 ).

c) Estimates of P(m* = 1) and P(m*>1) are then easily calculated from
normal curve probability values.

d) At the next level, we estimate P U U2 3 2 32− < −b g b gν ν , and multiply

this value times P(m*>1) to estimate P(m* = 2), etc.

e) Estimates for the BIC procedure proceed in the same manner, except
that the value Ln(N) is substituted for 2 as the multiplier.
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Confidence Interval Procedure for Assessing Fit

The sequential LRT procedure is essentially flawed from a logical standpoint,
primarily because it is an “accept-support” strategy, i.e., accepting the null hypothesis that

population fit is perfect (i.e., that f * = 0  for a given m) leads to the “desirable” decision
to retain the current (hopefully small) number of factors.

This strategy is undesirable for several reasons. First, and perhaps foremost, the

null hypothesis of perfect fit (i.e., that f * = 0) for m less than the “maximum” as defined
on page 2, is extremely unlikely to be true. On a priori grounds, we would expect the
“true” number of factors to be, inevitably, this maximum value.

Consequently, the performance of the sequential LRT procedure is highly
dependent on the power function of the LRT.  “Too much” power leads, inevitably, to a
large number of common factors, because the hypothesis of perfect fit will be rejected

despite the fact that the actual f * is quite close to zero. This seems undesirable, and no
more logical than testing the null hyothesis that two means are equal  when N =
1,000,000.

On the other hand, if power is too low, we may (all too conveniently) decide that
the number of factors is small when the true number is actually large.

It seems to us that the solution to the above problems is not to dispense with the
hard-won advantages of having a statistical basis for our judgements, and simply state,
rather vaguely, that “one should not retain significant but meaningless factors.” Rather,
we should clarify what we are trying to accomplish with our technology, and shift to a
more appropriate rationale.  To us, this means shifting from what is clearly an outmoded
and suboptimal hypothesis-testing approach toward a confidence-interval based
procedure.

By obtaining confidence interval estimates for f * , we obtain all the information
inherent in the hypothesis testing procedure, (i.e., the traditional test fails to reject when
an appropriately defined confidence interval includes zero), and we also receive valuable

information about the precision of estimate of f *  afforded by our data.

f *  is itself a rather natural index of “badness of fit” of a multivariate model, since
it is approximately equal to the quadratic form

′ −d S d1

where d is a vector of the elements of the residual correlation matrix, and NS 1−  is the

inverse variance-covariance matrix of the parameter estimates. Hence we can think of f *

as a “sum of squared, standardized residuals.”  Like the non-centrality parameter we
computed in our analysis of variance classes, it is a rather natural, and easily comparable
index of fit.
                                                                       (....ctd)
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We recall our assumption (a) on page 4.  To the extent that this assumption is

correct, we can obtain an interval estimate on f *  by first obtaining an interval estimate

for �, and then dividing its endpoints by k (or whatever multiplier was used).
Several procedures are available for obtaining confidence interval estimates on the

non-centrality parameter of a chi-square distribution with known degrees of freedom.
One very simple procedure uses the general interval construction method given in Cox
and Hinkley's “Theoretical Statistics,”  page 212.  Using the aforementioned normal
approximation to the non-central chi-square distribution, we solve (iteratively, using a
quasi-Newton approach) for those values of the noncentrality parameter � which would
yield a distribution in which the observed value of U falls at the .05 and .95 percentile
points.  Such values yield a 90% confidence interval.  An alternative, more elegant
procedure is given by Winterbottom in a recent article in the Journal of the Royal
Statistical Society.

Hence, using a very simple procedure, programmable in a few lines, one may

obtain a confidence interval estimate for � and f * .  However, in assessing the
comparative fit of multivariate models, such as the factor model at various levels of m,
we must keep in mind that, as more factors are retained, some improvement in fit is
inevitable, simply as a function of reduced degrees of freedom.  Ideally, we should assess
“badness of fit” by a method which distinguishes that improvement which is inevitable
from that which results from choosing a model which is actually a better match to the
structure of the data.

Hence, we propose that a more useful confidence interval is one calculated on the

“root mean square standardized residual,” i.e., a confidence interval on 
f *

�

F
HG
I
KJ

1
2

. As we

show in the numerical examples on the next page, such confidence intervals can alter or
reinforce our perspective on some classical data sets.
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Some Numerical Examples

24 Psychological Variables (N = 145)

m DF U Low High

1 252 617.5 .093 .114
2 229 418.9 .066 .090
3 207 292.8 .040 .069
4 186 220.8 .008 .055
5 166 183.7 .000 .050

Guttman's 1954 Circumplex Data  (N = 710)

DF U Low High

12 27.1 .021 .063 Circumplex
  4 16.1 .035 .098 Quasi-

Circumplex
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Table 1
Mean Number of Factors Obtained
(Predicted Values in Parentheses)

“Weak Factor” Condition

p = 10

Chi Square AIC BIC

m = 2 N = 50 2.06 (2.05) 2.20 (2.03) 2.00 (1.99)
100 2.02 (2.05) 2.12 (2.03) 1.94 (2.00)
150 2.06 (2.05) 2.08 (2.03) 1.90 (2.00)
200 2.02 (2.05) 2.10 (2.03) 1.98 (2.00)
250 2.04 (2.05) 2.16 (2.03) 2.00 (1.98)

m = 4 N = 50 1.50 (1.46) 1.64 (1.52) 1.00 (1.00)
100 1.98 (1.88) 2.24 (2.04) 1.12 (1.02)
150 2.28 (2.32) 2.68 (2.40) 1.60 (1.71)
200 3.44 (3.44) 3.68 (3.71) 2.90 (2.97)
250 3.72 (3.84) 3.98 (3.97) 2.74 (2.65)

m = 6 N = 50 1.66 (1.81) 1.86 (1.49) 1.04 (1.00)
100 2.88 (3.05) 3.38 (3.22) 1.68 (1.57)
150 2.72 (3.20) 3.30 (3.06) 1.22 (1.11)
200 3.38 (3.53) 3.74 (3.72) 1.80 (1.49)
250 3.34 (3.43) 3.64 (3.38) 2.26 (2.42)

p = 15

Chi Square AIC BIC

m = 3 N = 75 2.65 (2.55) 3.00 (2.89) 2.00 (2.00)
150 3.05 (3.04) 3.10 (3.04) 2.90 (2.88)
225 2.85 (3.00) 3.10 (3.04) 2.35 (2.27)
300 3.05 (2.72) 3.25 (3.04) 3.00 (3.00)
375 3.15 (3.05) 3.05 (3.04) 3.00 (3.00)

m = 6 N = 75 3.30 (2.55) 3.50 (2.95) 1.00 (1.04)
150 4.35 (4.62) 4.75 (4.63) 2.60 (2.79)
225 4.55 (5.02) 5.40 (5.02) 2.25 (2.22)
300 4.45 (4.41) 4.90 (4.70) 3.90 (3.96)
375 5.10 (5.30) 5.75 (5.59) 3.75 (3.73)

m = 10 N = 75 2.85 (3.52) 3.05 (2.26) 1.00 (1.01)
150 3.70 (4.21) 4.30 (3.66) 1.95 (2.02)
225 4.80 (5.62) 5.30 (4.73) 2.10 (2.04)
300 5.50 (5.91) 6.00 (5.51) 1.80 (1.50)
375 5.75 (6.39) 6.40 (5.82) 2.80 (2.76)
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Table 2
Mean Number of Factors Obtained
(Predicted Values in Parentheses)

“Strong Factor” Condition

p = 10

Chi Square AIC BIC

m = 2 N = 50 2.10 (2.05) 2.36 (2.03) 2.00 (2.00)
100 2.04 (2.05) 2.20 (2.03) 2.00 (2.00)
150 2.10 (2.05) 2.30 (2.03) 2.00 (2.00)
200 2.08 (2.05) 2.30 (2.03) 2.00 (2.00)
250 2.04 (2.05) 2.30 (2.03) 2.00 (2.00)

m = 4 N = 50 2.94 (3.06) 3.32 (3.08) 2.66 (2.77)
100 3.12 (3.15) 3.48 (3.21) 3.00 (3.00)
150 3.12 (3.23) 3.62 (3.37) 3.00 (3.00)
200 3.32 (3.31) 3.67 (3.53) 3.00 (3.00)
250 3.40 (3.40) 3.78 (3.66) 3.00 (3.00)

m = 6 N = 50 2.08 (2.62) 2.74 (2.11) 1.12 (1.03)
100 3.20 (3.66) 3.80 (3.52) 1.56 (1.22)
150 3.72 (4.00) 4.18 (3.99) 2.44 (1.73)
200 3.94 (4.13) 4.30 (4.11) 3.04 (2.51)
250 4.08 (4.19) 4.30 (4.17) 3.74 (3.24)

p = 15

Chi Square AIC BIC

m = 3 N = 75 3.05 (3.05) 3.20 (3.04) 3.00 (3.00)
150 3.10 (3.05) 3.10 (3.04) 3.00 (3.00)
225 3.00 (3.05) 3.40 (3.04) 3.00 (3.00)
300 3.15 (3.05) 3.40 (3.04) 3.00 (3.00)
375 3.15 (3.05) 3.20 (3.04) 3.00 (3.00)

m = 6 N = 75 5.85 (5.72) 6.35 (5.75) 3.65 (2.54)
150 6.00 (6.04) 6.10 (6.03) 5.70 (5.57)
225 6.00 (6.05) 6.10 (6.03) 5.90 (5.98)
300 6.05 (6.05) 6.15 (6.03) 6.00 (6.00)
375 6.00 (6.05) 6.10 (6.03) 6.00 (6.00)

m = 10 N = 75 4.00 (4.60) 4.85 (3.35) 1.35 (1.29)
150 5.60 (5.80) 6.15 (5.38) 2.85 (2.07)
225 5.80 (6.39) 6.45 (6.21) 3.35 (2.82)
300 5.95 (6.81) 6.55 (6.68) 4.60 (3.87)
375 6.50 (7.11) 7.10 (7.00) 5.15 (4.61)


