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THE RELATIONSHIP BETWEEN EXTERNAL VARIABLES AND
COMMON FACTORS

JAMES H. STEIGER
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A theorem is presented which gives the range of possible correlations between a common
factor and an external variable (i.e., a variable not included in the test battery factor analyzed).
Analogous expressions for component (and regression component) theory are also derived. Some
situations involving external correlations are then discussed which dramatize the theoretical
differences between components and common factors.
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Introduction

Since 1970, a number of articles have focused on basic theoretical and structural
aspects of the common factor model, with particular emphasis on the phenomenon of
factor indeterminacy. (See, for example, papers by Schénemann, 1971; Schénemann &
Wang, 1972; Meyer, 1973; McDonald, 1974; Mulaik, 1976; Green, 1976; Schonemann &
Steiger, 1976; McDonald, 1977, Mulaik & McDonald, 1978; Schénemann & Steiger,
1978a, 1978b; Steiger, Note 1; Williams, 1978.) Factor indeterminacy refers to the fact
that, for any set of factor loadings, there exist infinitely many factor random variables,
many quite different, which satisfy the definitional requirements of a common factor.
Since these random variables are empirically indistinguishable (in the sense that they fit an
observed set of data equally well), they represent continuing uncertainty about the identity
of a factor.

The present paper explores a somewhat different aspect of factor indeterminacy, by
examining the possible relationships between a common factor and an external variable
(i.e., one not included in the test battery factor analyzed). The external variable need not
necessarily be observed empirically—it might well be purely hypothetical.

For the sake of comparison, some analogous results for component theory and
regression component theory [Schénemann & Steiger, 1976] are given. Finally, some
implications for the comparison of factors (and components) across different batteries of
tests are briefly discussed.

Some Basic Theory

Given some p observed random variables in the random vector y, with &(y) = 8,
var (y) = &(y') = R, the m-factor orthogonal common factor model holds for y if

N y=Ax + Uz
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where x is anm X | random vector of m *“common factors,” z is a p X 1 random vector of
p ‘“‘unique factors,” 4 is a p X m matrix of constants, of full column rank, called the
“common factor pattern,” U is a p X p diagonal, positive definite matrix of coefficients
called a ‘“‘unique factor pattern,” and x, z satisfy the conditions

(2) &(xx') = I, 8(xz') = P, &(z2') = I, 8(x) = 0, &(z) = 0.
It is well-known that (1), (2) may hold for y if and only if one can write
3) R =44 + U~

However, for any 4, U, satisfying (3) for a given R, there exist infinitely many x, z
which satisfy (1), (2). Any and all of these may be written

4) x = A'R™'y + Ps,
z= UR"ty — U™ 'APs,
where s is any random vector satisfying
(5) 8(ys') = 0, 8(ss") = 1, &(s) = B,
and P is any Gram-factor of I — A'R™'4, i.e.,, PP’ = [ — A'R7'A.
One may rewrite (4) as
(6) x=By+e=3%+e,

which shows that a factor may be thought of as composed of 2 parts, one a determinate
linear combination of the observed variables in y, the other an indeterminate compo-
nent e.

The Correlation between a Factor and an External Variable

Let w be an external variable (in standard score form), not included in the test battery
». The external correlation between w and a common factor x; is given by

@) Few = 8(x;w) = 8@R7'yw) + 8(pisw) = ciw + Cop.

Since e; is largely arbitrary, (7) suggests immediately that an external correlation is not
determinate, and may in fact be free to vary over a wide range of values. In order to
develop upper and lower bounds for ., (and the e, which yield these bounds), we first
need the following Lemma.
y
yE= 1w
L’j

be a (p + 2) X 1 random vector, composed of random variables in standard score form,
whose partitioned correlation matrix may be written

Lemma
Let

R rnn n
() R¥=|r 1 r
ry rp 1

with obvious notation. Then the correlation r,, between w, and w, must satisfy
(9) riR_lrz — 0103 < to < riR_lrg + 0102

where o,, o, are the standard errors of w, and w, about their linear regressions on y.
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Proof. By partial correlation theory, one obtains

(10) -1 —%wy <

- (0'11.y Uzz.y)l/2

where
(1) Oy =he— MRy, 04y =1 — R =0}, 00y =1—nR'rn=o9d

The result follows immediately by substitution. Q.E.D. (The lemma and proof are
essentially due to McDonald, 1977.)

Using the lemma, one may derive upper and lower bounds between a factor and an
external variable, as is shown in the following theorem.

Theorem

The correlation r,,, between common factor x; and external variable w satisfies the
bounds

(12) cwi, = (1 = R y)P0e, < rux, < cug, + (1 — RS y) %0,

where R , is the squared multiple correlation between w and the tests in y, and o, the
standard deviation of e,, is given by o, = (1 — ajR"'a;)"’?. The ¢, yielding the upper and
lower bounds given in (12) are, respectively,

(13) €jimax) = OeSw,

€jmin) = T €jmax),

where s,, is that normalized component of w which is linearly unpredictable from y, i.e., s,
= (W = cwyR7YNL = R,V

Proof. Let R in (8) satisfy (3). Then let w, in the lemma be x;, the j*" common factor. If
wy = X;, then r, = a,. Let w, in the lemma be equal to w, the external variable. Equation
(12) then follows by substitution, via (7). It is easily verified by substitution that the ¢; in
(13) yield the bounds in (12). Q.E.D.

Equation (12) shows that the range of external correlations, which is given by
20, (1 — R} ,)"%, is a function of two influences, the indeterminacy of factor x; and the
*“externality” of w, i.e., its linear unpredictability from the tests in y.

External Correlation Theory for Components and Regression Components

External correlation theory for components may be derived more directly than that
for common factors, because components are uniquely defined as linear functions of the
observed variables; such theory is presented here for the sake of comparison.

Schonemann and Steiger [1976] proposed, as an alternative to the common factor
model, a general class of linear data reduction systems, which they call “component
decompositions.” Specifically, they define m linearly independent variables in x* as
“components” of p = m random variables in y if and only if there exists a matrix of
defining linear weights B such that

(14a) x* = By,
and
(14b) var(x*) = B'RB is positive definite.

This rather broad definition includes as special cases ““principal components,” “linear
. . p
discriminant functions,” “partial images,” ‘“‘anti-images,” and the various types of “factor
score estimators.”
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A component decomposition of y in terms of m components in x* is written

(15) y=Ax* + E = AB'y + (I — AB')y.

]

A “regression component decomposition,” in the terminology of Schénemann and
Steiger [1976], is a component decomposition in which the rows a) of the pattern 4 contain
regression weights for predicting the observed y; from x*, i.e.,

(16) A = RB(B'RB)™*,
or equivalently,
B =R 'A(A'R™4)~".

From the above definitions, one may easily derive that the correlation between an
external variable w and a component x¥ = b}y is determinate and is given by

(17) Fesw = bjeyuw(BiRb;) ™2,

As an interesting special case of (17), one may write the correlation between an
external variable w and a regression estimator X; = a;R~'y of a common factor x; as

(18) Fiw = aj'R_lcyw(a/'R_la.l)_l/2 = Ca?,wo'-x';-

Similarly, it follows that the correlation between a regression component x* and an
external variable w is given by

(19) Fesw = QR (@R 1 a)) 2,

External Correlational Theory—Some lllustrations and Examples

Some special cases from external correlation theory serve to illustrate possible impli-
cations of the theoretical differences between components and common factors. Consider,
for example, an external variable w which is orthogonal to all the tests in y. From (17)
through (19), one may readily see that such a w must be orthogonal to any of the
regression components or components of y, and likewise to the regression estimators of
the common factors of y.

On the other hand, (12) shows that, for such a w, the possible correlation 7., between
w and common factor x; ranges from —a,, to +o.,. Hence, if common factor x; has
minimum correlation indeterminacy index of zero (corresponding to a multiple correla-
tion of .71 between x; and the observed variables in y), it may correlate anywhere from
=.71 to +.71 with w.

Another interesting special case involves the comparison of factors (and components)
across different batteries of tests. Suppose, for example, 2 different factor analyses are
performed on the same population of subjects. However, the two factor analysts are
interested in entirely different aspects of behavior, and their test batteries are linearly
uncorrelated, i.e., all the variables in the first experimenter’s test battery are uncorrelated
with all the variables in the second battery. Suppose further that each factor analysis yields
a single common factor with a minimum correlation index of zero. What is the correlation
between these two factors?

Since all components (including regression estimators of a common factor and
regression components) are linear functions of a set of observed variables, it obviously
follows that components from orthogonal test batteries must be orthogonal. However, a
similar result does not hold for common factors. Indeed, one can easily derive that, in the
above-mentioned situation, the correlation r, ., can vary anywhere from —1 to +1.

Specifically, with obvious notation

(20) X,

X2

ARy + s = X+ e,

@R 3'Ys + pasy = X + ey,
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and since it is given that &(,3) = @, it follows by substitution that
21 Frz, = 8(x1X2) = E(Xie;) + E(X2e1) + E(erez).

If the minimum correlation index for x, and x; is zero, then var (X,) = var (X;) = var
(e;) = var (e;) = % Since the two test batteries are orthogonal, X, satisfies all the
requirements for e;, and X, satisfies all the requirements for e,. If one sets e; = X,, and e, =
X,, then &(£,e;) becomes var (£,) = 4, 6(X,e,) becomes var (¥;) = 4, and &(e,e;) becomes
&(£,%,), which is zero, since the two test batteries are orthogonal. Hence, by setting e; = X,
and e, = X,, one obtains r, ,, = 1. Similarly, if one sets e, = —%,, and e, = — %, thenr, ., =
—1. One can always obtain an r, ,, equal to zero by choosing mutually orthogonal e, and
e, which are orthogonal to X, and X,, respectively.

Hence, it is apparent that two common factors from orthogonal test batteries need not
be orthogonal. In the current situation, such factors could be the same factor, the
“opposite” factor, or orthogonal to each other, i.c., the correlation between the two
factors could range from —1 to +1.

Conclusions

For any set of factor loadings which satisfy the common factor model, there exist
infinitely many random variables, some quite different, satisfying the definition of a
common factor. Components of a set of observed variables, on the other hand, are
uniquely defined as linear combinations of these variables. In many practical data analytic
applications, this theoretical distinction may seem of minor consequence. On the other
hand, as has been demonstrated here with the theory of external correlations, factor and
component models may diverge sharply in some situations. Prospective users of factor
analytic and component approaches may wish to keep these distinctions in mind when
evaluating the relative merits of the two methods for analyzing multivariate data.

REFERENCE NOTE

1. Steiger, J. H. The relationship between external variables and indeterminate factors. Unpublished doctoral
dissertation, Purdue University, 1976.
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