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TESTING PATTERN HYPOTHESES ON
CORRELATION MATRICES: ALTERNATIVE
STATISTICS AND SOME EMPIRICAL RESULTS

JAMES H. STEIGER
University of British Columbia

ABSTRACT

The goodness-of-fit of correlational pattern hypotheses has traditionally
been assessed either with a likelihood ratio statistic (in conjunction with
maximum likelihood estimation) or with a quadratic form statistic (in con-
junction with generalized least squares estimates). In the present paper,
several alternative statistics, based on the use of the Fisher r-to-z transform,
are proposed, and their performance (as well as that of the traditional
statistics) is assessed in a Monte Carlo experiment. The new statistics are
shown to have Type I error rate performance at smaller sample sizes which
is notably superior to their more traditional counterparts.

A correlational “pattern hypothesis” specifies that certain
groups of elements in a correlation matrix are equal to each
other, and/or to a specified numerical value. Such hypotheses have
wide application in the social sciences. For example, they can be
used to test whether correlations among variables measured on
the same subjects have remained stable over time, or to test sig-
nificance in “cross-lagged panel correlation” analysis. For other
applications, see such references as McDonald (1975), or Joreskog
(1978).

The statistical testing of pattern hypotheses is not straight-
forward, because correlation coefficients measured on the same
individuals are, in general, dependent random variables. The possi-
bility of obtaining maximum likelihood estimates for the param-
eters of a general analysis of covariance structures model (Jores-
kog, 1970) made a broad range of correlational tests possible
and was a congsiderable breakthrough in this ares. Details of such
testing procedures are given elsewhere (e.g., Joreskog, 1978) and
need not be repeated here. Essentially, in the analysis of covariance
structures approach, the hypothesis is that the population covari-
ance matrix C, of order m x m, is of the form

[11 C = DRD
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where D is a diagonal matrix of scale factors to be estimated, and
R is a patterned correlation matrix. If C* is the matrix of maxi-
mum likelihood estimates of C under the null hypothesis, and A is
the sample covariance matrix, then for

[2] ¢ = log |C*| - log [A[ + Tr(AC*-1) — m

the statistic U, = Ny, is distributed asymptotically as a chi-square
variate with degrees of freedom given by McDonald (1974, Eq. 5),
among others.

A drawback of the likelihood ratio test approach is that it
requires computer iteration of maximum likelihood estimates of
D and R. McDonald’s (1974) ingenious derivation of the matrix
of first and second derivatives of the likelihood function allowed
the use of the classical Newton method for iterating these esti-
mates and reduced computation time significantly, without chang-
ing the essential nature of the statistical procedure.

~An alternative approach to estimation and significance test-
ing for correlational pattern hypotheses uses the generalized least
squares principle. Browne (1977) gave details of this method,
together with a quadratic form test statistic. ‘

Both the likelihood ratio statistic and the generalized least
squares quadratic form are asymptotic chi-square statistics, and
their convergence properties and small sample usefulness are
largely unknown. Although expansion formulae are available for
obtaining close approximations to the distribution of U, for some
hypotheses, such formulas are cumbersome to derive and imple-
ment for the general case. Hence, although the user of the tradi-
tional statistics is informed that they are “large sample,” there is
seldom any practical advice about how “large” a “large” N should
be.

The original primary purpose of the present research was to
shed some light on this question through the use of Monte Carlo
gsimulation methods. However, preliminary results indicated that
Type I error rate control for the traditional asymptotic statistics
was simply not adquate when N was less than 10p. This, in turn,
led to attempts to develop test statistics with improved small-
sample performance qualities.

The approach used in the present paper for accomplishing
this objective relies on the normalizing and variance-stabilizing
properties of the Fisher r-to-z transform. Neill & Dunn (1975)
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reported that, for testing the extremely simple “pattern hypothesis”
that two elements of a correlation matrix are equal, the use of the
Fisher transform in what can be seen to be a special case of the
quadratic form statistic led to excellent small sample performance.
This, in turn, suggested the more general use of the transform in
modified quadratic form statisties.

After a review of some required - prehmlnary algebra, the
modified quadratic form statistics are derived. The performance
of the new. and old statistics is then assessed and compared in a
series of Monte Carlo experiments. The encouraging results sug-
gest very strongly that with the use of the newer test statistics,
adequate Type I error rate control can be maintained with sample
gizes as small as 5p, thus yielding, effectively, “small sample”
inference for correlational pattern hypotheses with either the
maximum-likelihood or generalized least squares approaches.

SOME PRELIMINARY RESULTS

Let p be a vector of the &k = (m?—m)/2 unique off-diagonal
elements of P, the m xm population correlation matrix of a MVN
random vector x. Let r be a corresponding vector of sample corre-
lation coefficients, based on a-sample of size N.on x.

A pattern hypothesis on p states that some elements of p are
equal to each other, or to specified values. Such hypotheses may
be written in the form

Ho: p = Ay + p* = p(v,p*) ,

where A is a kx¢q matrix of zeroes and ones with elements given
by 8; = op:/dvs, v is a gx1 vector of common (unspecified)
correlations, and p* is a kx1 vector containing specified values
for elements of p, and zeroes in all other positions.

For example, let P be 4x4. Let H, be that ps; = 9oy = vi,
that p32 = .6, and that py = P2 = Pz = v2. Then Hy, may be
written

P21 1 0 0
Ds1 1 0 0
Pa 0 1 0

H,: = Y1
¢ Pa2 0 0 Ya * .6
y o) 10 1 — 0
Pss 0 1 0
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In practice, since p* contains specified values, the estimation
of p reduces immediately to the problem of estimating v.

In this paper, discussion is restricted to three types of esti-
mates of v, ?ML (“maximum likelihood estimates”), which mini-
mize the loss function ¢, in [2], ?(OLS (“ordinary least squares”
estimates), which minimize ¢ = (r — ﬁ)’ (r — ﬁ), and ?GLS
(“generalized least squares estimates”) which minimize the loss

function ¢3 = (r — ﬁ)’ S-1 (r - 1';), where £ is a consistent esti-
mator of 3, the asymptotfic variance-covariance matrix of N¥%r.
3 has typical element oy given by (see Pearson & Filon, 1898)

[3] Oiam = Yol (Dn — Dilx) (Dim — Pralim)
+ (D — PaDm) (P — DiDi)
+ (D ~ DimPm) (DPim — DriDim)
+ (Djm — PiPiom) (P — DimPm)]

It is well known that r has an asymptotic distribution which
is multivariate normal, with mean p and varianece-covariance ma-

trix 3/N. ?ML, in general, is not expressible in closed form, and
must be obtained by iteration. (See, for example, McDonald, 1975.)

?Ls is given by

[4] s = (MA) AT

?GLs may be written as

[5] "Y\GLS = (A'gox,s"lA)“lA’gons—l(r — p*)

where §ox,s is the estimate of = obtained by substituting elements of

Bor.s for py; in [31.
Let z. be a vector of Fisher transforms of the elements of r,
i.e.,
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[6] z(ry) = Yoln [(1 + ry;)/(1 — )] ©

Straightforward application of the multivariate “delta” theo-
rem (Olkin and Siotani, 1964, Note 1; Szatrowski, 1979) yields
the result that z, has an asymptotic distribution which is multi-
variate normal, with mean z, and variance-covariance matrix
3*/(N — 38), where 3* has typical element given by

[7] *am = Com/ (1 — P52) (1 — Di?)

(This result is given in several sources. For example, see Dunn
and Clark, 1969.)

QUADRATIC FORM STATISTICS

Some important equivalencies between maximum likelihood
and GLS estimators have already been established. (See Browne,

1974, 1977.) Perhaps the most important result is that ?m. and ?/GLS
are asymptotically equivalent, which may be verified as follows.
The asymptotic distribution of r is MVN(p,2/N). Hence, the
asymptotic log likelihood is maximized under a null pattern hypoth-

esis by minimizing the quadratic form, N(r — A’y\ -~ p*yZ-1(r —
A? — p*), under choice of '\? This is accomplished by setting ?
equal to the asymptotic MLE, ?*ML = (A’ZIA)-AZ-1(r — p*).
?*ML and ?GLS are asymptotically equivalent, since plimy.,.. N*%
(Yers — y*ur) = 0. This last fact may be proven quite directly.
Specifically,
N% (Yars — v¥ur) = [(a%0rs™1A) 1A grg—t —
(AZ1A) NI IIN%(r — p* — Ay)
= BN*(r — p* — Ay)

However, plimy,. B = 0, and, on the other hand, N%(r — p*
— Ay) has a limiting distribution, thus establishing the result.

Next, we give an abbreviated proof that the quadratic form

[81 X = N(r — Pers) Sors~1(r — Pers)
JULY, 1980 339



James H. Steiger

is asymptotically x2;,_,. First, we recall the following (Timm, 1975,
p. 132)
Lemma. Let y be MVN(y,C). Then the quadratic form X =
Y’ Ay has a chi square distribution with » degrees of freedom
and iibn-centrahty parameter A = ’Au if and only if AC is
idempotent and of rank v.
Asymptotically, the result will be apphcable if plim N.mAC satlsfles
the Lemma. In the present ¢ase, X may be written :

[9] X = N(r — AYors — P*)Dos~2(r — AYars — P¥)
=N (r*'ﬁo[,s_lr*)
with
[10]  r*=(I1-2Q) (r— p*),and @ = (4%ors=1a) 1S ors

Since, under a true null hypothesis, plim s §0L5“1 = 3-1 it
follows that Q* = plim y. Q = (A’S—!A)=1A’5—1, and that, under
true H,, r* is asymptotically MVN(Q, (I — aAQ*) (3/N) (I —
AQ*)’). To prove that X is asymptotically x%_, we must show
that 3—-1(I — AQ*) 3 (I — AQ*)’ is idempotent and of rank k—q.
Idempotency is easily established by substitution and recombina-
tion. Specifically, we find that 3—1(I — AQ*) 3, (I — AQ*) =1 —
S—IA (A2 -1A) 1A, In this latter form, we clearly recognize that the
rank of the expression depends on the rank of A, which is k—gq,
and idempotency is also immediately evident.

Sinee GLS and ML estimators are asymptotically equivalent,
it follows directly that the quadratic form

[11] Us = N(r = Pr)’ Sar™* (r — Par)

is also asymptotically x%—, (It perhaps should be noted that any
congistent estimator of 3 can be substituted in [8] and [11] with-

340 MULTIVARIATE BEHAVIORAL RESEARCH




James H. Steiger

out affecting the asymptotic result.) The preceding theory general-
izes readily to monotonic, differentiable functions f (p) of p. Spe-
cifically, any pattern hypothesis on p ean be reexpressed as an
equivalent pattern-hypothesis on f(p), i.e, £(p) = Af(y) + £(p*).
Via the multivariate delta theorem, we find that f(r) is asymptot-
ically MVN (f(p), 2*/N). 3+ ig calculated from 3 as 3+ = D’ZD,
with D having elements §; = of(r;) /‘arjlr=p. With arguinents
analogous to those preceding, it may be verified that the maximum
likelihood and generalized least squares estimators of f(y) are
equivalent, and that chi-square quadratic forms analogous to [8]
and [11], but with f(p), f(r), and S+ substituted for p, ¥, and
f respectlvely, may be constructed. The GLS estimator 'f(p) is
glven by f(p)GLS = f('Y)GrLS + f(P*)a with f('Y)GLS = (88 +ops—1A) 1
A’2+0LS 1(f(l') - f(p*)) :

Alternatively; since £(p)ar, = f(Pur), and since, asymptotically,
because of the equivalence of GLS and ML estimators, plima-e
N*%(£(Pur) — £(Pexs)) ‘= 0, we have x? forms with £(p), £(r), and
$+-1 gubstituted for f), r, and 3—1, respectively. Qur present inter-
est ig in normalizing and variance stabilizing transforms, such as
Fisher’s r-to-z [6] or Hotelling’s (1953) extensions, which have
the potential for improving the small-sample performance of the

chi-square statistic. In the case of the Flsher transform, we have
the quadratic forms ‘

[12] Us* = (N - 3) (z. — z:ML),i"*ML_l (zr — z:ML)’ and
[13] : X* = (N - 3) (z - Z;G]DS), ‘E*OLS_1 (zr — Z:GLS) ¢

The multiplier N—38; used in place of N, is a practical concession
to the fact that the variances of z. are known to be, for small
samples, approximately 1/(N —38). The multiplier has no effect on
the asymptotic result. Similar quadratic forms may be constructed
for the Hotelling transforms.

X and X* involve less computational effort than U, U., or
Uz*, because’ the latter statistics require (sometimes extenswe)
iteration to obtain maximum likelihood estimates. It should also be

JULY, 1980 341




James H. Steiger

noted that the k x & matrix 3* need not be inverted, as the elements

of ﬁ*-l can be obtained more directly with adaptations of a
formula given in Jennrich (1970). Jennrich’s method requires
only pxp and ¢xgq matrix inversions and can yield considerable
savings in computation time when % > 10.

As a “quick approximation” to X, and X., one might substi-
tute OLS estimators and obtain

[14] Xo= (N = 8) (% — Zpyo)* S*ors™ (7 — Zpy,) -

X, is somewhat easier to compute than X,, is usually very close to
it in numerical value, and is, for many pattern hypotheses, formal-
ly equivalent. (Browne, 1977, discusses a number of situations
where OLS and GLS estimators are formally identical.) X, is not
always a x%,, statistic although (as shown in the Monte Carlo
experiments to follow) it appears to be a rather good approxima-
tion.

EMPIRICAL PERFORMANCE OF THE STATISTICS—SOME MONTE
CARLO RESULTS

All of the test statistics discussed are based on asymptotic
distribution theory. However, there is virtually no information
available about how such statistics (even the more traditional U,
and X) perform at small to medium sample sizes. Neill and Dunn
(1975) showed that a statistic similar to X, decisively outper-
formed U at small sample sizes in Type I error control. One might
conjecture that this small sample superiority is due to the distribu-
tional stability of z, and would generalize to more complicated
hypotheses, but further empirical evidence is necessary to establish
this.

In the present paper we investigate, through Monte Carlo
simulation experiments, the performance of various statistics in
testing several pattern hypotheses. The investigation is limited by
a number of practical considerations. First, any of the statistics
may be applied to a virtually unlimited variety of hypotheses and
the present study investigated only a small cross-section of these.
Second, the computation time required by the maximum likelihood
approach makes Monte Carlo investigation, even for small and
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moderate size matrices, extremely expensive, and so very large
correlation matrices could not be investigated. Despite its limita-
tions, the study provides valuable information on the relative
performance of the various methods. (Indeed, there seems to be
little information available on the performance of the likelihood
ratio test, despite its wide popularization.)

The results reported here concentrate on Type I error rate
control, rather than power, for several reasons. First, the author
feels that, in comparing statistics, Type I error rate control is of
primary importance. If statistics control Type I error equally well,
then relative power becomes important, but, in our opinion, power
is not of great importance if a statistic does not control Type I
error. Second, for situations where violation of the null hypothesis
is moderate, the asymptotic chi-square statistics are known to have
a non-central chi-square distribution with non-centrality parameter
which is very close to the value which would be obtained if the
statistic were computed on the population correlation matrix. (See,
for example, Kendall and Stuart, 1961, p. 231, Szatrowski, 1979.)
The non-central chi-square can be closely approximated by an
adjusted central chi-square, and so power estimates for the various
statisties may be obtained rather easily. In situations where the
statistics have converged to their asymptotic distributions, we
would expect them to have approximately the same power. Third,
empirical assessment of power is extremely expensive, because for
any given type of pattern, a whole range:of violations of the null
hypothesis must be examined.?

The general method used for simulating the sampling of a
correlation matrix from a multivariate normal population was a
standard approach for studies of this type. Vectors of independent
random normal deviates were constructed using a standard (Mar-
saglia rectangle wedge-tail method, given in Knuth (1968)) random
number génerator on an Amdahl V/6-IT computer. These vectors
were then linearly recombined using a Gram-factor of the desired
correlation matrix to yield the simulated sample data matrix.
Sample correlation matrices were then computed and analyzed by
the various computing methods. (Unless otherwise noted, 2500
replications were obtained in each condition.) Maximum likelihood

1. The author has examined empirical power performance for the sta-
tistics for a limited number of situations whete N was sufficiently large to
minimize differences in ‘Type I error rates, In these cases, power for the
various statistics was virtually identical, and empirical power was very close
to that predicted by the non-central chi square approximation.
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estimates were obtained by TESPAR (McDonald, 1975) which is
by all accounts the most efficient program of its type available.
Convergence criterion was set, as in McDonald (1975), at .0005.
(Preliminary investigation seemed to indicate that lowering the
convergence criterion to .0001 had virtually no effect on Type I
error rates.)

Type I error rate control was assessed empirically for six
different types of pattern hypotheses, which, for convenience, we
label (a) Identity, (b) Equicorrelation, (¢) Partial Equicorrelation,
(d) Matrix Equality, (e) Circumplex, and (f) Toeplitz.

The Identity hypothesis is simply that all off-diagonal ele-
ments of the correlation matrix are zero. Two levels of matrix size
(p = 4, 8) were crossed factorially with six levels of sample size
(N = 25,:50, 75, 100, 150,-200) in this'investigation. Results are
presented in Tables 1 and 2, which contain empirical Type I error
rates when nominal « was .05. (Results at other levels of nominal

Table 1

Empirical Type I Error Rates—Identity Hypothesis"
m=4 '
, X, U U, U,* X X#
N =25 .0508 .0888 .0500 .0508 .0476 .0508
50 0408 .0584 0416 0408 .0400 .0408
75 0532 .0604 .0496 0532 .0524 .0532
100 0428 0552 0452 10428 0424 .0428
150 .0468 L0492 - .0452 0468 0424 0468
200 0536 0532 0520 - 0536 0532 05636
m=8
X, U, U, U,* b¢ X
N =25 0636 2144 .0596 0636 0676 .0636
b0 .0468 .1008 .0500 0468 .0496 0468
75 .0568 ,0908 0568 0568 - 05668 0568
100 0480 0792 0524 .0480 05186 0480
150 0540 0692 .0552 0640 - .0548 0540
200 0504 L0572 0492 _.0504 .0508 0504

« (.02 and .01) essentially parallel those for the .05 significance
level. The .05 level results have the lowest inherent variability
and so we present them alone in the interest of brevity.) The left
hand column gives results for X, the quadratic form “approxi-
mate” chi-square statistic using OLS estimates. The next three
columns give statistics based on maximum likelihood estimates. U
is the (“uncorrected”) likelihood ratio statistic. U, is a “corrected”
likelihood ratio statistic, obtained by substituting the constant
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Table 2
Empirical Type I Error Rates—REquicorrelation Hypothesis

m=4 y=.90

X, U, U, Uy* X X*
N =25 0644 0940 0572 .0644 0620 0644
50 - .0600 0600 0460 0500 0500 - .0500
75 0564 0632 0536 0564 .. 0552 0564
100 0512 0572 .0532 0512 .0520 0512
150 - -.0516 0536 40488 0516 .0492 0516
200 0608 0652 0624 0608 0604 0608

m=4 y=.50

X, U, U, U,* b¢ X*
N=25 0452 0884 0528 0452 0520 0452
50 .0468 0616 0422 04638 .0464 .0468
75 0492 0624 0536 0496 0512 .0492
100 0512 L0592 0504 0516 0512 0512
150 0564 0624 0548 0564 0566 .0564
200 0548 0616 0576 0548 0564 .0548

m=4 y=.,10

X, U, U, U,* X X*
N=25 0452 0836 0484 .0448 .0492 .0452
50 0464 .0640 0492 0468 0464 .0464
5 0468 0672 0484 0468 0492 0468
100 .0584 0692 L0592 0584 0612 .0584
150 0420 0496 0432 L0420 0436 0420
200 0512 0532 L0500 0512 0516 0512

N — [(2m + 11)/6], as suggested by Box (1949), for N in com-
puting U,. (U, was derived specifically for testing the Identity
hypothesis at small sample sizes. However, preliminary indications
from an earlier Monte Carlo investigation were that the use of the
correction constant might also produce considerable improvement
in the performance of the likelihood ratio statistic in testing other
hypotheses. Consequently, we present results for U, in festing
these other hypotheses.) U.* is the quadratic form statistic given
in [9], which uses Fisher-transformed MLE’s. The rightmost
columns give results for statistics based on GLS estimators, X is
the original “raw correlation” quadratic form statistic given by
Browne (1977). X* [13] is a revised quadratic form, using Fisher-
transformed correlations. It should be noted that, for the Identity
hypothesis, X, X*, and U,* are all identical, and reduce to the
simplified formula

[15] Xo = X* = U2* = (N - 3) p Zijz .
i<i
X has the very simple reduced formula
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[16] X=N 3r ij2 .
i<t
The equicorrelation hypothesis states that all off-diagonal ele-
ments of the correlation matrix are equal to a common, but un-
specified value. Three different population matrices of order 4x4

were tested, with y values of .90, .50, and .10. The partial equi-
correlation hypothesis (results are in Table 3) specifies that two

Table 3
Empirieal Type I Error Rates—Partial Equicorrelation Hypothesis
v = .50
m=4
X, U, U, U,* X X
N =25 0516 .0b54 0424 0445 .0580 0516
50 0456 .0520 0444 .0460 .0508 .0456
75 0476 0512 0468 0480 0500 0476
100 0460 0484 0452 .0460 .0480 .0460
150 .0468 .0492 .0468 .0468 0476 .0468
200 0472 .0492 0472 0476 .0488 0472

elements of the correlation matrix are equal to each other and to a
common unspecified value. In this investigation the population

Table 4
Empirical Type I Error Rates—Matrix Equality

m=4 y=.,90

X, X X*

N =25 0556 1472 0556

50 0524 1100 .0524

75 0460 .0852 0460

100 .0488 0832 .0488

150 0524 .0624 0524

200 .0488 .0676 .0488
m=4 y=.50

X, X X

N = 25 .0636 .0920 0536

50 0548 0724 0548

75 .0580 0692 0580

100 .0488 .0596 0488

150 .0536 ’ 0620 0536

200 0476 0600 0476
m=4 vy=.10

X, X X*

N =25 .0496 .0528 0496

50 0460 0464 0460

75 0456 .0456 .0456

100 0492 .0500 .0492

150 0508 0524 .0508

200 0524 .0508 0524
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matrices were identical to those used in testing the equicorrelation
condition. The hypothesis tested was that pi2 = PDis.

The matrix equality hypothesis states that p = p¥, i.e. that
the population correlations are exactly equal to specified values.
In this case, two sizes of population matrix (4x4, 8x8) were
investigated. The 4 x4 population matrices were the same as in the
equicorrelation and partial equicorrelation conditions. The 8x8
matrix had all off-diagonal elements equal to .50. Results for this
hypothesis are presented in Tables 4 and 5. (Since McDonald’s
(1975) program cannot test this hypothesis except for P = I,
statistics based on ML estimation were not calculated in this
condition.)

Table 5
Empirical Type I Error Rates—Matrix Equality 8x8
(1000 replications)

v = .50
X, D¢ X
N =25 0580 1760 0580
50 .0650 1200 L0650
75 0610 0990 .0610
100 0510 0950 .0510
150 0480 0740 L0480
200 0370 0600 0370

Results for the circumplex and Toeplitz patterns are presented
in Table 6. The circumplex hypothesis, for a 6x6 correlation

Table 6 ‘
Empirical Type I Error Rates—Circumplex Hypothesis
ms==6
X, U, U, U,* X X*
N=25 0644 1468 0724 0672 0760 0644
50 0460 0780 0516 .0480 .0564 .0460
75 0492 .0672 0536 0500 .0528 0492
100 0460 .0588 0472 0456 .0480 0460
150 0460 .0608 0492 0464 .0488 0460
200 0448 .0504 0440 0456 0456 .0448
Empirical Type I Error Rates—Toeplitz pattern
m =6
X, U, U, U,* X X*
N=25 .0648 .1318 0510 .0490 .0576 0484
50 0608 .0848 .0528 0500 .0536 0496
75 .0552 0640 .0492 0480 0544 0484
100 0520 0604 0480 .0468 0500 0444
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matrix, specifies P to be of the form presented in Table 7. In this

Table 7

The 6 x 6 Circumplex
1
Y1 1
T2 71 1
Y3 Yo 71 o1
')(2 Y3 Yo Y1 1
71 Yo Y3 Yo Y1 1

case, we used as population values, y; = .8952 v, = .2950 y; =
.2497. These are the OLS estimates obtained from analysis of
Guttman’s (1954) circumplex data. (See, for example, Browne,
1977; Joreskog, 1978.) The Toeplitz pattern hypothesis specifies R
is of the form given in Table 8. The same population matrix was

Table 8

Toeplitz Pattern
1
71 1
Va2 Y1 1
RE] Y2 71 1
Y4 Y3 Y2 71 1
V5 Y4 s Y2 Y1 , 1

used for this hypothesis as for testing the circumplex hypothesis,
i.e., y1 = 3952, yo = 2950, v3 = .2497, v, = .2950, y5; = .3952.
Some major trends are evident in Tables 1 through 6. First,
U,, the uncorrected likelihood ratio statistic generally advocated
in treatments of ML estimation, performs rather poorly in all
conditions. X, the “raw correlation” quadratic form, performs rea-
sonably well in most conditions, but very poorly in the “matrix
equality” condition when correlations are high. This problem is in
a sense, to be expected, because X assumes raw correlations are
normally distributed, and departures from normality are known
to be quite severe when p;; are high in absolute value and N is not
large. X, the “approximate statistic,” performs well in a number
of conditions. Indeed, for many of the hypotheses, it appears to be
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identical to X*. However, for the Toeplitz pattern X, is notably
inferior to X* though supéridr to Us.

Clearly U,, U,*, and X* appear to be the best performing
statistics. They all perform quite well, even at small sample sizes,
and they perform consistently for all hypotheses tested.

To help summarize the performance of the test stati‘stics, two
chi-square goodness of fit values, based on a normal approximation
to the binomial, were computed for each statistic in each condition.
The statistics were

= R3(a — .05)2/[a(l — )]

where R is the number of Monte Carlo repetitions, 2 the empirical
estimate of Type I error. The first chi-square was computed for
the three values of N from 25 to 75, the second (except for the
Toeplitz pattern) for N = 100-200. Small-sample statistics are
presented in Table 9 while large-sample statistics are glven in
Table 10.

Table 9
Summary Chi-Square Statistics
Small Sample Values (N = 25, 50, 75)

Statistic
Hypothesis X, U, U, Uy* X X*
Identity (m = 4) 5.95 54.49 443 5.95 7.12 5.95
Identity (m = 8) 10.50 522.75 6.27 10.50 14.45 10.50

Equicorrelation (y = .9) 10.53 68.62 3.95 10.58 7.49 10.53
Equicorrelation (y = .1) 2.64 4742 0.31 2.78 0.80 2.64
Equicorrelation (y = .b) - 1.94 58.14 3.83 1.92 - 1.01 1.94

Circumplex - 9.55 226.08 19.45 12.02 26.38 9.55
Toeplitz 15.44 193.08 0.48 0.27 4.24 0.29
Partial Equlcorrelaf:lon 1.56 1.67 598 - 291 2.96 1.56
Overall x2,, | 58.11  1172.55 44.70 46.83 64.45 42.96
Matrix Equality (m 4, 2.69 319.83 2.69
9
Matrix Equality ( =4, 4.68 : 85.78 4.68
y = 5)
Matrix Equallty ( =4, 2.03 : 2.24 2.03
1 .
Matrix Equahty ( = 8, 6.99 182.79 6.99
v =.5) ' S
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Table 10
Summary Chi-Square Statisties
Large Sample Values (N = 100, 150, 200)

Statistic
Hypothesis X, U, U, Uy* X X*
Ident@ty (m = 4) 4.38 1.84 2.87 4.38 7.62 4.38
Identity (m = 8) 1.01 45.94 1.62 1.01 1.28 1.01

Equ@eorrelation (y=.9) 531 12,52  7.16 5.31 5.00 5.81
Equ}correlation (y=.1) 1726 14.82 6.60 7.26 8.04 7.26
Equicorrelation (y = .5) = 8.11 16.19 3.718 3.17 3.49 3.17

Circu{nplex 3.40 8.61 2.61 2.96 141 3.40

Toeplitz (N = 100 only) 0.20 4.76 0.22 0.57 0.00 1.85

Partial Equicorrelation 1.92 0.21 2.34 1.80 0.61 1.80

Overall x2,, 26.59 104.89 27.20 26.46 27.45 28.18

Matrix Equality (m = 4, 045 54,98 0.45
y=.9)

Matrix Equality (m = 4, 1.03 14.73 1.03
y = .5)

Matrix Equality (m = 4, 0.36 0.82 0.36
v =.1)

Matrix Equality (m = 8, 4.85 38.73 4.85
y =.5)

As a summary measure of performance, an overall y? statistic
was obtained by summing values of x? over all conditions. These
values confirm that X*, U,, and Uz:* perform very well, X and X,
are adequate (except for X in the matrix equality condition) but
that U, is notably inferior to the other statistics. The chi-square
summary statistics for the smaller sample sizes fall between the
60th and 70th percentiles for a x%. variate, and those for large
samples are around the mean for x2.,, indicating that, overall, Type
I error rate performance of U,, X;* and Uj* is very close to the
nominal value of .05.

SUMMARY

The preceding results are rather limited. They investigated
only a few hypotheses, and for smaller size matrices. To a consider-
able extent, this limitation was unavoidable, due to the extreme
expense of simulating many replications of an iterative procedure.
However, the major trends manifested in this data were very
consistent, and it seems fair to say that they probably generalize
to most if not all pattern hypotheses tests.

One important finding is that U, is, indeed, a “large sample”
statistic. For example, with N = 75, m = 8, U, has an empirical
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« of .09 at the nominal .05 level. Indications are that this trend
toward excessiveness would be much more pronounced when larger
matrices are tested. Us* performs very well in all conditions. Since
the time required to compute U.* is a very small fraction of the
time required to obtain MLE’s, the computation of this statistic,
especially when m is large and N small, will generally yield much
more accurate inferences than the use of Ui, and with very little
increase in cost.

U, is easily obtained from Uj, is easier to compute than Uz ,
and performed just as well as U,* in the conditions we tested.
However,; it should be used with some.caution as a general statistic,
because the correction factor was derived for a situation where all
correlations are specified to be zero. In conditions (such asg the
partial equicorrelation hypothesis) where degrees of freedom are

small relative to (72n ), the correction factor may be excessively

small, and the test statistic too conservative, Nevertheless, U,
seems likely to be a major improvement over U, in most situations.

Statistic X (Browne, 1977) tends to be highly excessive in
testing matrix equality, and this drawback would seem to outweigh
any advantages in its use. Fortunately, this does not prove to be a
serious limitation, because the modified quadratie form X statistic,
presented here appears to allow accurate small sample inference
in all situations. The excellent small sample performance of X*
suggests that, indeed, there is little if any‘necessary loss in accur-
acy when GLS estimates are used (with the proper test statistic)
in place of MLE’s. This, in turn, raises the prospect of consider-
able saving in computational effort in testing pattern hypotheses,
especially for large correlation matrices.

REFERENCE NOTE

1. Olkin, I, & Siotani, M. Asymptotic distribution funections of a correla-
tion matrix. Techmcal Report No. 6. Laboratory for quantitative research in
education, Stanford University, 1964.
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