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Dispelling Some Myths About Factor Indeterminacy

James H. Steiger
University of British Columbia

" A simple numerical example helps illuminate some of the issues discussed by Maraun (1996),
and also helps dispel some of the myths connected with the posterior moment position.

Maraun (1996) evaluates, with admirable clarity and succinctness,
several conceptual positions regarding the phenomena of factor
indeterminacy. He dismisses two of the positions as either irrelevant or
misguided, and concentrates his attention on two points of view which he
calls the alternative solution position (ASP) and the posterior moment
position (PMP). Maraun argues very convincingly that the alternative
solution position (ASP) view of indeterminacy is the correct one.
According to Maraun, PMP “conflates the meaning of a latent common
factor with senses of the concept of factor that are external to the model.
‘When the criterion for latent common factor is properly explicated, it is clear
that there is indeed a fundamental indeterminacy to the model.”

In this commentary, I present a simple numerical demonstration, (a) as
an aid to those unfamiliar with the intricacies of indeterminacy, and (b) as a
challenge to some who are familiar, and claim indeterminacy has no
‘important consequences. This numerical example seems to demonstrate,
rather convincingly, that some of the assertions of the proponents of PMP are
‘incorrect.

A Signal from Space?

Suppose it is believed that a signal may be emitted ten times (and only
ten times) at one hour intervals from point X, starting at 1:00 PM. Point X
can never be observed directly. Receivers are constructed to measure the
signal at points Y, ¥,, 13, ¥,. However, the signal is “jammed” by a noise
ccountersignal at each receiving point. An additional signal, at point W, is
received directly without any noise degradation. Fortunately, it is known
from intelligence sources that (a) all signal and noise distributions have zero
means, (b) the signal and noise components are additive, and (c) they are
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precisely uncorrrelated over the ten observations taken, and (d) that the ten
signals have a variance of exactly 1. Moreover, suppose that the distribution
of Y is discrete muitivariate, with only ten 4-tuples assigned positive
probability, the ten 4-tuples equally likely, and so the ten observations
happen to mirror exactly the population multivariate distribution.

Clearly, the signal believed to exist can be considered a random variable
X that satisfies the definition of a common factor for the 4 random variables
in the vector Y. If the assumptions (a)-(d) are correct, the common factor
model is an appropriate data generation model for these data. Now suppose
that the 10 observations on Y are received at the 4 stations, one each hour,
starting at-1:00 P.M. These ten observations are shown in Table 1.

Note that the information in Table 1 for Y may be read in either of two
ways. One can regard it as a finite list of observations, in which case one
should transpose the factor analysis equations appropriately to adjust for the
fact that the scores are in columns, that is, Y = XA' + &, or as the discrete

multivariate distribution for random variable Y, with each 4-tuple having
probability 1/10, in which case the equations hold as in Maraun’s (1996)
article. ‘

We have several questions of interest, which we hope the factor analysis
model, coupled with our data analysis tools, can shed some light on:

1. How much noise is degrading each signal?

2. What are the values of the signals? In particular, was the signal at
3:00 P.M. greater than the signal at 4:00 P.M.?

3. Do the signals show any intelligent pattern?

4. Ts there any correlation between the signal at X and the signal at #?
If so, what is it?

This problem differs from the typical “real world” application of factor
analysis in two very important respects. '

1. We are assuming for simplicity that the entire population is ava11ab1e
and there is no sampling error at all in estimating the covariance matrix %,

for the variables in Y, and

2. We are taking it as a certainty that the assumptions of the factor
model actually hold.

Typically, neither of these two assumptions could be taken for granted.
Only a small sample from a larger population would be available, and so our
problems would be exacerbated by the additional complexities of sampling
variability and statistical estimation. Moreover, we would have to decide on
the basis of imperfect evidence whether the factor model is appropriate at all.
Such problems tend to obscure the issues Maraun (1996) is trying to clarify,
so I have eliminated them from consideration.
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corr(X|, W) =-0.202

-1.041
-0.192
1.752
-0.402
-0.794
-0.9
1.084
1.454
-0.001
-0.96

Y2 =

1.14
-0.9
0.176
1.708
-0.798
-1.278
0.853
-0.323
0.625

-1.203 |

corr(X,, W) =0.399

Table 1
Factor Indeterminacy: A Numerical Example
0.905 1641 0.203
0.591 -0.598 -0.929
0501 037  1.848
0488 -0495 0.74
Y=1-078 -1.101 -0.074
-1.598 1216 -0.404
0.749 0514 -1.703
0079 -0343 -0.727
2132 0576 1226
| 0255 -1.779 -0.182
[0 02 015 a1
02 1 0.2 008
Y=1015 012 1 006
0.1 008 006 1 _
0.398 0.742
-0.284 -0.616
0314 0.491
1.949 -0.241
1, =|-0.055| D,=|-0743 | X, =
-0.794 -0.485
0.608 0.245
0.232 -0.092
-0.636 1.261
| -0.64 | -0.563 .

0.344
10332
0.805
-2.19 05
w=|-0688 | A=| 04
0.309 03
0.363 02
0.14
1.898
| | 0.077
FTazs o o o
0 084 0 0
0 0 091 0 | p=0775
0 0 0 096
0.258 1 0.484
0384 -1 0.232
0.509 1 0.518
-0.759 iy 0518
L=| 1743 |x,=| 1 | x,=|-2486
0515 -1 0.031
0.755 i -0.509
-0.908 -1 0.817
0.261 I 1.522
L0437)] [-1] L0125

The ten observations on Y and W are given in Table 1, along with some
summary statistics associated with them. Notice that, since the entire
population of observations is available, I have computed the covariance
(and correlation) matrix % using the population formulae (with N, rather
‘than N - | in the denominator).

It takes only a few moments to type X into a standard factor analysis
program to fit the common factor model to the data. One discovers that a
single common factor model fits the data perfectly, with the values for A and
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W2 given in Table 1. The factor model fits the data perfectly, W2 is
identified, so we can specify the amount of noise variance degrading each
signal. It turns out there is a substantial amount of noise degrading each
signal, but that there is more noise degrading signal Y, (.96) than is
degrading signal Y, (.75). Hence, the factor model can answer question 1.
Note also that, if all the assumptions of the model are correct, a component
model will not produce a correct answer to this question.

Subsequent questions in our list require us to decide on the value of the
signal emanating from X at the various hours on the basis of the values
obtained at Yy, Y,, Y3, ¥,. Unfortunately, in accordance with Mafaun’s

(1996) Equation 3, there are infinitely many sets of random variables X and
o that might have generated Y via the factor analysis equation Y = AX + 8.

They can be specified via Maraun’s Equation 3. For example, D, can be

calculated as in Table 1. This “determinate” part of X is often referred to as
“regression factor score estimates” by factor analysis programs. There are
infinitely many ways to construct the “indeterminate component” /.. Since

in this case I, can be vector of finite length, we can construct numbers. Two

such examples are shown in Table 1. The reader may verify that each of the
two candidates for the common factor X fits the observed data, the factor
pattern A, and all the stipulations of the factor model perfectly. (One may,

incidentally, calculate a table of & values corresponding to the X values in
Table 1 via the equation 8 =Y - XA’, for any of the alternative Xs. These
will satisfy all the stipulations of the common factor model. For brevity, I

have not included them in Table 1.)
Suppose, upon constructing solution X, as in Table 1, Person A

announces that “intelligent life has been found in a distant galaxy.” His
justification is that X, has a beautiful, orderly structure that suggests it might

be an attempt by intelligent life to communicate with us. Later in the day,
Person B announces that there need not be intelligent life on the distant
galaxy, because X, and X, are equally valid common factors of Y, and X,

shows no orderly pattern at all. Neither does D,.
While X, and X, have identical covariance relations with Y, they give
rather different answers to questions 2, 3, and 4. Specifically, X; has a

strength of .176 at 3:00 and a much higher value of 1.708 at 4:00. On the
other hand, X, has a value of 1.00 at 3:00 and a much lower value of -1.00 at

4:00. Factor X, gives a resounding “yes” in answer to question 3, while X,
gives an equally resounding “no.” These two equally valid factors have a
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correlation of .399. Note that it is possible to construct factors that correlate
as little as -.202 with each other with these data. X; is an example of a factor
‘that correlates -.202 with X,. When equally valid factor can correlate so
“minimally with each other, it seems questionable to talk of having “found the
factor X via factor analysis. Yet that is precisely what factor analysts often

do.
Table 1 also demonstrates that factor indeterminacy can have

implications at the covariance level, and the random variable level, not just
“for factor scores.” The different factors have different correlations with
variable W, an external variable. For example, X, correlates approximately

-.2 with W, while X, correlates approximately +.4.

On “Understanding” Random Variables

Clearly, then, the possible factors X; and X, are different. Clearly, it is
not meaningful to refer to factor analysis of Y as having determined “a”
single factor for Y. There are many different factors, having different
multivariate distributions with Y, which all fit the factor model with the
same A.

Again, I emphasize that the columns of 10 numbers in Table 1 may be
conceptualized as the possible values of discrete random variables having a
discrete multivariate distribution, with each of the 10 observations having
equal probability. If one takes the ten numbers in X, and places them
-alongside Y, one obtains the possible values in a 5-variate multivariate
discrete distribution. Clearly, a different distribution results if you put the
‘numbers in X, alongside Y. Yet both versions of X fit the factor model
perfectly. Those who claim that proponents of the “distinct solution” do not
“understand” the concept of a random variable well enough are simply
wrong. It is indeed possible to define “different” random variables X, &
which give rise to Y through the factor model, with the same A and W2, For

example, in Table 2 (next page), I present the discrete multivariate
distribution of Y and X|. One notes that such a distribution fulfills all the

‘requirements for X to be a factor of Y. If one took the values for X, from
Table 1 and replaced the X| values in Table 2 with these numbers, one would

have an alternative random variable whose multivariate distribution is fully
specified, and which also satisfies all the stipulations for an X. One can say
‘that both X and X; satisfy the definition of a factor of Y.
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Table 2
The Discrete Multivariate Distribution for Random Variables ¥,, ;. ¥;. ¥,. X,

Y, Y, Y; Y, X, Pr(Y, YV,, V3, Yy X))
0.905 1.641 0203 -1.041 1.14 .10
-0.591  -0.598  -0929 -0.192 -0.9 .10
-0.501  0.37 1.848 1752 0.176 10
-0488 -0495 0.74 -0.402  1.708 10
-0.785 -1.101 ~ -0.074 -0.794 -0.798 .10
-1.598 1.216 -0.404 -09 -1.278 10
0.749 - 0514 -1.703  1.084 0.853 .10
-0.079  -0.343 -0.727 - 1454 -0.323 .10
2,132 0576 1.226 -0.001  0.625 .10
0255 -1.779 -0.182 - -0.96 -1.203 .10

Bartholomew (1981) preferred to look at this phenomenon somewhat
differently. His view emanates from the following simple idea. Suppose you
view the role of the factor analyst as determining the distribution of X given
Y. To simplify the discussion, assume temporarily that only two alternative
solutions X; and X, are available. Suppose you view the role of the factor

analyst as determining the distribution of X given Y. If you observe values
of 0.905, 1.641, 0.203, -1.041 on Y,, 1,, V3, Y,, you could say, referring to

Table 1, that X is either +1.14 or +1.00. But Bartholomew’s view is that you
should think about the situation differently, from a Bayesian perspective.
Assume that there is only one random variable X, and that the conditional
distribution of X given Y is not a point distribution. Rather, it assigns
probability .50 to the outcome +1.14 and .50 to the outcome +1.00. Note
that, in either case, you end up stating that, given observed values of 0.905,
1.641,0.203, -1.041 on Y}, Y, ¥3, ¥4, X could be +1.14 and could be +1.00.
The important thing is that, not only is this way of thinking about
indeterminacy not particularly helpful (in terms of solving the problem), the
belief that it is in some sense the correct way to think about indeterminacy
seems based on little more than a personal prejudice that has nothing to do
with the mathematics of the problem. To understand this more fully, let’s
continue to assume for the moment that X, and X, are the only candidates for

X we can think of. Clearly X satisfies a/l the mathematical requirements for
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a random variable fitting the factor model, and clearly the posterior
distribution of X; given Y is a point distribution.

We can understand Bartholomew’s (1981) idea of a conditional .
distribution of X, 8 given Y. What remains nebulous is precisely what kind
of random variable X he is talking about. Consider the discrete multivariate
probability distribution in Table 3. Notice that, this is simply a probabilistic
mixture where the multivariate distributions of Y, X| and Y, X, as defined in
Table 1 are both given equal probability. Note that the conditional
distribution of X, & given any of the ten possible 4-tuples observable on Y
assigns probability .5 to each of two possible values of X. For example if
you observe values of 0.905, 1.641, 0.203, -1.041 on Y}, Y,, 13, ¥,, you see
from Table 3 that only two values of X (+1.14 or +1.00) are possible, and so
‘the conditional distribution of X given that particular observed 4-tuple on Y
assigns probability .5 to those two values. One can quickly verify that the

Table 3
The Discrete Multivariate Distribution for Random Variables Y, V5. V3. ¥,. X,

Y, Y, Y, Y, X, PI(Y,, Yy, Vs, Yy X))

0905 1641 0203 -1.041 | 05
591 -0.598 0929 -0.192 -1 05
0501 037 1848 1752 1 05
0488 -0495 074  -0402 - 05
-0.785 -1.101  -0074 0794 1 _ 05
1598 1216 -0404 09 -1 05
0749 0514 -1703 1.084 1 05
-0.079 -0343  -0.727 1454 -1 05
2132 0576 1226 -0.001 | 05
0255 -1.779 -0.182 -096 - 05
0905 1641 0203 -1.041 1.14 05
0591  -0.598 -0929 « -0.192 -0.9 05
0501 037 1848 1752 0.176 05
0488 0495 074 0402 1.708 05
-0.785  -1.101  -0.074 -0.794 -0.798 05
1598 1216 -0404 -09  -1278 05
0749 0514 -1703  1.084 0853 05
0079  -0343 -0727 1454 -0323 05
2132 0576 1226 -0.001  0.625 05
0255 -1.779 -0.182 -096  -1.203 05
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random variable X defined in the discrete multivariate distribution of Table 3
also satisfies all the stipulations of the common factor model. It too is a
factor of Y! But it is not the same random variable as either X, ) or X, and

has no more claim to being “correct.”
The example of Tables 2 and 3 is of course a simplification. There are
infinitely many X; we could construct, so the distribution of X given Y is

potentially continuous, if one accepts the infinite analog of X,. If one

assumes equal priors, it assigns equal posterior probability to all possible
values of X given Y. This can only make things worse, not better.

Behavior Domain Notions and Their Implications

Mulaik and McDonald (1978) proposed an infinite behavior domain
position. This position has merit, though I fear many have simply used it as
an argument for not thinking about indeterminacy, rather than actually
exploring its implications. It is based on the idea that, as the number of
variables in Y goes to infinity, if Y continues to fit the 1-factor model,
indeterminacy vanishes. The upshot of this is that, if you are sampling your
variables from an infinite domain that fits a single factor model, there is in
the infinite domain really only one determinate X, and it is one of the infinity
of possibilities available for X in the finite set of variables you have observed
so far. Consider the numerical example in Tables 1-3. If you chose one of
the possible factors, say, X;, and generated several thousand other Y variates
from the distribution of X;, you would discover that, if you factor analyzed
the new Y that included all these variates, all the possible candidates for X
would now be virtually identical. This follows from the elementary notion
that, if you add enough predictors to a multiple regression equation, the
multiple correlation eventually converges to 1.

Maraun (1996) dismisses the infinite behavior domain (IBD) argument.
There are at least two reasons for doing so. First, the IBD argument is not
about the factor model of equation I, but a different model, in which the p
observed variables are but a sample from a larger domain. So rather than
solving the problem, it simply redefines the model. Second, the IBD
argument provides an interesting way of thinking about the status of
common factors, but it is empirically empty, unless one actually chooses to
test its provisions. Clearly, one can always assume there are more variables
out there that fit the factors which fit the variables one has now. This is
rather like an experimenter “solving” the problem of an overly wide
confidence interval for the correlation between two variables by assuming
that he/she has sampled 45 observations from a larger domain with the same
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correlation as the present observations! Indeed, many very difficult problems
in statistics could be “solved” with the aid of such an approach. So while the
infinite domain model adds an interesting new philosophical angle to -our
ways of thinking about indeterminacy, it has no practical implications unless
you should decide to test it.

Testing the infinite domain model would require gathering more
variables, to somehow test the notion that one is in fact sampling from an
infinite behavior domain. Of course factor analysts often have absolutely no
intention of doing that, with good reason. First, many have already
exhausted their efforts gathering the variables for the first factor analysis.
‘Second, all the evidence seems to suggest that, generally, the number of
factors required to obtain an adequate fit to data tends to go up as a relatively
constant function of the number of variables. Gathering more variables
might prove embarrassing as well as time-consuming, because for
indeterminacy to vanish, the ratio of number of factors to number of
variables has to go to zero in the limit. It is extremely unlikely for this to
occur. Perhaps the following mathematics will make clear why.

Theorem |

Let p-variate random vector Y satisfy a single factor model with “factor”
X, with factor pattern A as in Maraun’s (1996) Equation 1. Suppose variable

W is added to the current test variables in Y. For simplicity, assume all
variables have unit variances, so that 3 is a correlation matrix. A necessary

and sufficient condition for # to fit the single common factor model for one
of the possible versions of factor X is that 5,,, = Ac, for some scalar ¢ for

which0<¢?2< 1.
Proof

Let Z be the random vector with Y augmented by W. The augmented
factor pattern A, must be of the form

The result then follows directly from Maraun’s (1996) Equation 2, since
2, =E@ZLY=AA,+ W2, and
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AA’ Ac

Ac c?
n

It is easy to see that such a /" must follow a very stringent restriction
with respect to the multidimensional space occupied by the random variables
in Y. Specifically, the part of W predictable from Y must be colinear with
the original determinate part of X. This means that that part of ¥ predictable
from the original Y must not have any predictability from p - 1 dimensions
orthogonal to D, = A’3-'Y. The proof is straightforward.

Theorem 2

A equivalent necessary and sufficient condition to that given for variable
W in Theorem 1 is that the part of W linearly predictable from Y be colinear
with the determinate part of X in the original battery, that is, W =cD, + Wy,

where E(YW ) =0.

- Proof

By well known results in multiple regression, ¥ may be written as the
sum of two random variables, one of which is linearly predictable from Y,
and one of which is orthogonal to Y. From the standard formula for beta
weights in linear regression,

A
W=W,+W,
=BY+W,,

=g’ -1
o' W2 LY+W,,

However, from the result of Theorem 1, this becomes

W=cA'ZY+W,
= CDx + W_Ly
]

Hence, as the infinite behavior domain gets larger and larger, the
proportion of “available dimensions” in the test battery that the next new
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variable can have any correlation with gets smaller and smaller. Y can have
30 variables, but the next W can only correlate at all with a single linear
composite of them. It is not difficult to see that, as the number of variables
increases, it is increasingly unlikely for any additional variable to satisfy this
restriction, even approximately, in practice. This is why the number of
factors tends to increase in published factor analytic studies as the number of
variables increases.

In spite of my generally skeptical reaction toward the IBD approach, I
see some hope for resolution between the IBD and ASP positions. The
seminal paper of Schonemann and Wang (1972) included the suggestion that
as a practical response to indeterminacy, the determinacy index (the
minimum correlation between equivalent factors) be computed. There is an
excellent reason for doing so. If, for example, one were to find that the
minimum correlation between alternative candidates for factor X is .997, it
‘would seem that indeterminacy has virtually vanished as a problem.
‘Moreover, if one is actually able to sample enough variables to both fit a low
dimensionality factor model and achieve a high determinacy index, then it
would appear there is empirical support for the notion one is in fact sampling
from a behavior domain. This suggests that a way out of the indeterminacy
dilemma is to take the more useful aspects of Mulaik and McDonald (1978)
seriously, and insist that all “factors” used in practice be based on enough
variables and observations so that the (a) the determinacy index is high, and
(b) population fit of the factor model can be shown to be good.

Some Conclusions about Implications

By examining Maraun’s (1996) summary, carefully considering the
numerical example in Tables 1-3, and tracing the history of factor
indeterminacy, we can arrive at several conclusions. First, Maraun is correct
in his fundamental assertion. The alternative solution position is the correct
one, and the posterior moment position is simply incorrect. Second, factor
indeterminacy does have practical implications. We saw in our numerical
‘example that the correlation between an external variable W and factor X is
‘no more determinate than factor X itself. Several questions definitely worth
‘answering must be left unanswered while factors are indeterminate.

In the final analysis, perhaps the simplest yet most telling messages
‘common to the oft-conflicting work on indeterminacy are that high quality,
‘well planned measurement procedures can alleviate indeterminacy problems.
Ironically, such measures are in fact components, since the only truly
determinate “factor” is one that is perfectly predictable from Y. It seems
‘high-reliability linear composites are what the factor analytic community has
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been looking for all along, and perhaps it is no coincidence that Norman
Cliff (1995) devoted his Saul Sells Memorial Lecture to discussion of
methods for obtaining such composites. Perhaps it is time factor analysts
realized that a “determinate common factor” by another name will still
measure as well.
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