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Generalization of the Steiger—Lind root mean square error of approximation fit in-
dexes and interval estimation procedure to models based on multiple independent
samples is discussed. In this article, we suggest an approach that seems both reason-
able and workable, and caution against one that definitely seems inappropriate.

Steiger and Lind (1980) introduced the root mean square error of approximation
(RMSEA) fit index for evaluating covariance structure models. Steiger (1989,
1990, 1994, 1995) presented a detailed theoretical rationale for this index. For addi-
tional discussion and applications, see Browne and Cudeck (1993).

Here we briefly sketch the background for the RMSEA. Suppose that the sam-
ple covariance matrix S based on N = . + 1 observations has been fit to a model
M(®) that is a function of a vector of t parameters 0, and that the fitting has been ac-
complished by minimizing a discrepancy function F(S,M(8)) under choice of 6.

Define 6 as the minimizer of the discrepancy function, that is,

6= Arg Min F (S, M(®)) 1)

Under the standard regularity conditions, if F(S,M(8)) satisfies certain restrictions,
the quantity nF (S M(G)) will have a large sample distribution that is closely ap-
proximated by x 2 5 (i.e., anoncentral chi-square variate with v degrees of freedom,

Requests for reprints should be sent to James H. Steiger, Department of Psychology, 2136 West Mall,
University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. E-mail:
steiger@unixg.ubc.ca



412 STEIGER

and noncentrality parameter A). If the parameters are unrestricted (i.e., mathemati-
cally independent and variable), then v =p(p + 1)/ 2 —t. The noncentrality parame-
ter is

A = nF*=nF(Z,M(®)) 2)

The noncentrality parameter is thus n times the population discrepancy function,

F*= F(Z,M(8)), which is the value of the discrepancy function one would obtain

if one actually knew the population covariance matrix Z, and fit the model to it.
Define

5, ] (3)
S

s
s = vecs(S) = 2
Sa

SPII_

to be a vector composed of the p(p + 1) / 2 nonredundant (lower triangular) ele-
ments of S. Likewise, define 6 = vecs(M(0)) ande = s — 8. e is the vector of dis-
crepancies between the observed covariance matrix and the covariance matrix re-
produced by the model and the parameter estimates. If the discrepancy function
belongs to the class of generalized least squares discrepancy functions, it may be
written in the form

F(S,M@®)=¢'W'e )

where W is an appropriately chosen weight matrix. This form shows that the dis-
crepancy function is a weighted sum of squared discrepancies. Because the
chi-square statistic may be written

X=ne'Wle=¢'G'e (&)
it also is a weighted sum of squared discrepancies, where

=" (6)

We can obtain generalized least squares estimates by minimizing either X or
F(S,M(0)). The basic form for the RMSEA in the population is
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F* @)

where F* is the population discrepancy function, calculated by fitting the
covariance structure model to the population covariance matrix Z. The degree of
freedom parameter for the model is v.

Because, with generalized least squares discrepancy functions, F* is a weighted
sum of squared discrepancies, R can be interpreted as a root mean square stan-
dardized measure of badness of fit of a particular model to Z.

The RMSEA index has a number of advantages (Steiger, 1989, 1995). Particu-
larly important is the fact that a coherent estimation strategy exists—both a point
estimate and a confidence interval are available. As aresult, the problems and par-
adoxes inherent in testing models with large sample sizes are reduced. However,
the RMSEA is not a panacea, and should be considered a helpful tool for guiding
complicated judgments about model utility, rather than a substitute for such judg-
ments. In particular, rationales that use specific numerical RMSEA “cutoff” val-
ues (such as .05) for determining adequacy of model fit may not be able to stand up
to careful logical scrutiny.

At this writing, a number of structural modeling software packages calculate
and report the RMSEA index. The Steiger and Lind (1980) presentation dealt only
with the case where the model concerned only one population, and was tested only
on a single sample of size N. Here, we discuss the extension of the RMSEA to
more than one sample. We discover that this extension is not entirely straightfor-
ward. Indeed, simply applying a well-known computational formula for the
one-sample RMSEA to the chi-square statistic from a K-sample analysis can yield
a measure of fit that is clearly incorrect.

A MULTIPLE SAMPLE RMSEA

For simplicity, we refer here to the two-sample case, but the generalization from
two to K groups is immediate and obvious. Suppose there are two distinct popula-
tions, P, and P,, and we take samples of size N; and N, on random vectors y1and y;
of order p; x 1 and p, x 1, respectively. The random vectors y; and y, have corre-
sponding population covariance matrices and X, and X,. Then the combined ran-

dom vector
_ [yl ] ®)
y =
Y.

has covariance matrix
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0 Zz,

The sample covariance matrices, S; and S; and from the two samples, may be com-
bined into one matrix

g[S 0 (10)
0 S,

The overall model M(8) may be partitioned into submodels, that s,

M(e)z[Ml(e) 0] _ (11
0 M,

In this notational system, generalization of the single sample equations to the two
sample case is straightforward. Specifically, we have

-l 12
X=e'G"e=[C; eyl G 01 € (12)
0 G; le,

-1
—le] )] nW, 0 €,
0 n,W;' ||e,

= ’ -1 -1
=neWe +n,e,W)'e,

Alternatively, letting

n,=n, +n, (13)
and
¢, =n;/n, (14)
we may write
X =n,F(S,M(®)) (15)

=n,(c,e]W, e, +c,e,W,'e,)
=n,(c, F(S, ,M,(G))+c2F(Sz M, (6)))

With X and F expressed in this form, as in the single sample case, we may obtain our
estimates, and the related chi-square statistic, by minimizing either X or F under
choice of 8. X has, at large samples, a distribution that is approximately y 2 v+ Where
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v=p(p+1D)/2+p,(p, + /2t (16)
and
A=n,F* (17)
where
F*=c,F(Z,,M,())+c,F(Z,,M,®) (18)

Just as in the single sample case (see Steiger & Lind, 1980; McDonald, 1989), we
may estimate F* by estimating A with one of several available techniques, then di-
viding by n.. A point estimate is particularly easy to obtain (McDonald, 1989). Be-
cause, for a noncentral chi-square variate,

EX)=v+A (19)

we have the approximate large sample-result

- 0
E(X VJ =£=F* (20)
n. n.
The estimate is
F*=(X-v)/n, (21)

In practice the aforementioned estimate is usually modified to eliminate negative
values. Specifically, one uses

F* =max{(X —V)/n, 0) (22)

Interval estimates are obtainable using an iterative technique described by Steiger
and Lind (1980), Browne and Cudeck (1993), and Steiger ( 1995) The 100(1 ~ 0))%
confidence limits for the noncentrality parameter A of a X, distribution are ob-
tained by finding (via quasi-Newton iteration) the values A that place the observed
value of the chi-square statistic at the 100(ct/ 2) and 100(1 — o) percentile points of a
xv » distribution. Once a confidence interval for A = n.F* is found, one simply di-
vides the endpoints by n. to obtain a confidence interval for F*

Note from Equation 18 that F* is a weighted average of the discrepancies ob-
tained by fitting each population covariance matrix to the model specific to that
population, and that the weights sum to 1. Because there are population (and sam-
ple) specific quantities corresponding to the covariance matrix and discrepancy
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function, it is important to be careful generalizing from the single sample case to
that involving two or more samples. Specifically, although we can calculate a dis-
crepancy function for each sample, such a discrepancy function, when multiplied
by the n for that sample, need not have a 2 distribution if models for the different
populations involve the same elements of 0. If each submodel involves completely
different subsets of the elements of 8, then of course fitting the multiple group
model is precisely the same as fitting each model individually to its covariance ma-
trix. An example of this would be fitting the same confirmatory factor model to
two groups, but allowing all parameters to be different across groups. In this case,
the overall discrepancy function would be simply the (weighted) sum of the dis-
crepancy functions obtained by fitting each model separately to each covariance
matrix. The special case where models involve nonintersecting subsets of 0 is not
particularly interesting, though it does shed some light on how not to compute a
multiple sample RMSEA.

In constructing an appropriate K-sample analog of the RMSEA, itis important to
realize that, in general, there is no sample-specific degree of freedom parameter. The
degrees of freedom for a multiple sample model are calculated on the basis of the to-
tal number of variances and covariances and the total number of free parameters esti-
mated. Hence, in the general case it makes no sense to compute a set of “sample
specific” RMSEAs, and then compute some sort of weighted average of them. For
the population K-sample RMSEA one must take the overall population discrepancy
function (which is aweighted average of the sample-based discrepancies), divide by
the average number of degrees of freedom per sample, then take the square root to
obtain a root-mean-square measure. This yields the following definition.

* 23
RMSEA = F*/(V/K)=JE/£_ (23)
\Y
One may construct a point estimate for the RMSEA by substituting F*or F* in

Equation 21 for F* in Equation 23. With the latter, one obtains

Max{X /v-1,0} (24)
n

RMSEA = VK

Interval estimates for the RMSEA are obtained by inserting the endpoints for a con-
fidence interval for F* in Equation 23.
Equation 23 includes the well-known single sample formula as a special case.

DISCUSSION

Two aspects of Equation 23 are particularly noteworthy. First, F* is a weighted av-
erage of the discrepancies in the individual populations, where the weighting is a
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function of the sample sizes in the current analysis. When sample sizes are equal,
this is equivalent to the unweighted average. When sample sizes differ substan-
tially, the weights applied to the discrepancy in each population will also differ, and
the question naturally arises as to whether such weighting is appropriate. The an-
swer to this question is a function of experimenter preference, the type of model
employed, and the relative sizes of the experimental populations being examined.
The issue essentially vanishes when sample sizes are identical or close to it.
Second, employing the analog of the single-sample formula, say

Max{X/v-1,0} (25)
n

RMSEA =

to compute a K-sample RMSEA from the chi-square statistic will yield an incor-
rect result, that is, all values will be off by \/% . Such an error may in fact be
present in some release versions of distributed software. If so, it may be cor-
rected easi\lif_without upgrading the software, simply by muitiplying all reported
values by VK. Testing whether such a correction is necessary is straightforward,
as described here.

1. Construct two identical arbitrary data sets (random numbers will suffice).

2. Test one sample with a simple model, for example, a single factor model,
and record the RMSEA value.

3. Construct a two-sample model, where each group is tested with the same
model used in Step 2, but with no parameters constrained to be equal across
populations.

4. The two-sample RMSEA reported by the software should of course be
identical to the one-sample value, because two (in theory) completely in-
dependent samples have yielded identical fit to two independent versions
of the same model. If it is not, check whether multiplying the value by V2
yields an identical value. If it does, then it is highly likely that the software
is generating incorrect values by using the single-sample formula inap-
propriately.

5. If the test in Step 4 confirms that an error is present, multiply all point esti-
mates and interval estimates of the RMSEA by VK to obtain correct values.

NUMERICAL EXAMPLE

Suppose the 4 x 4 covariance matrices shown in Tables 1 and 2 were obtained for
two independent samples of size 100 each. Suppose further that a one-factor com-
mon factor model were fit to each of the two covariance matrices simultaneously by
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TABLE 1
Sample Covariance Matrix: Group 1

VARI VAR2 VAR3 VAR4

VARI1 2.000 .800 .600 .800

VAR2 .800 2.000 .600 .800

VAR3 .600 1.200 2.000 700

VAR4 .800 .800 .700 2.000
TABLE 2

Sample Covariance Matrix: Group 2

VARI VAR2 VAR3 VAR4
VARI 4.000 1.320 760 800
VAR2 1.320 1.000 600 400
VAR3 760 600 1.000 170
VAR4 800 400 170 1.000

the method of maximum likelihood, and the loadings were not constrained to be the
same across samples. In this case, the overall discrepancy function is the average of
the two discrepancy functions that are obtained when the two samples are fit sepa-
rately, using ordinary single sample methods.

In this case, if a single factor model is fit to the data in Table 1 with the method
of maximum likelihood using SEPATH, a maximum likelihood (ML) discrepancy
function of .049599 and an iteratively reweighted generalized least squares dis-
crepancy function of 0.050071 are obtained, and the point estimate for the
RMSEA (calculated from the IRGLS discrepancy function) is .122206. For the
data in Table 2, the corresponding values are .047936, .049066, and .120134.
When a simultaneous model is fit to the two samples, one obtains discrepancy
functions of .048767 and .049569, and an RMSEA point estimate of .121174. If
one calculates the RMSEA from the ML discrepancy function, as is done by some
software, the values will be slightly different from those reported here, but one
may still employ the check described in the preceding section.
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