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A general procedure is provided for comparing correlation coefficients between optimal
linear composites. The procedure allows computationally efficient significance tests on indepen-
dent or dependent multiple correlations, partial correlations, and canonical correlations, with or
without the assumption of multivariate normality. Evidence from some Monte Carlo studies on
the effectiveness of the methods is also provided.
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Asymptotic theory is available for the joint distribution of correlation coefficients,
under an assumption of multivariate normality (Hsu, 1949; Olkin & Siotani, 1976; Pear-
son & Filon, 1898), and without this assumption (Hsu, 1949; Steiger & Hakstian, 1982,
1983). This theory can be used for constructing large sample tests for equality of interde-
pendent correlation coefficients. A review and evaluation of available methods is con-
tained in Steiger (1980a). Asymptotic distribution theory is also available (e.g., Muirhead,
1982; Muirhead & Waternaux, 1980) for certain correlation coefficients (such as multiple
correlations, canonical correlations, and partial correlations) between optimal linear com-
posites of variables. Available theory has not been concerned with the comparison of
correlation coefficients of optimal composites involving different subsets of variables. This
situation could be handled using the delta method, either with analytic derivatives or with
numerical derivatives (Lord, 1975). Unfortunately, unless algebraic simplifications are
available, the amount of computational effort becomes prohibitive when the numbers of
variables involved in the linear composite become large. For example, consider a routine
application of the delta method to the comparison of two multiple correlations measured
on the same test batteries given to the same subjects on two occasions. With 20 predictor
variables and one criterion, an estimated variance-covariance matrix of correlations of
order 861 x 861 would have to be calculated, and 1722 derivatives would have to be
evaluated. A massive computational effort would be involved.

This paper shows that standard theory available for simple correlations may be ap-
plied directly to certain correlation coefficients between optimal linear composites such as
multiple correlations, canonical correlations, partial correlations, and an internal corre-
lation coefficient derived by Venables (1976) as a union-intersection test for sphericity.
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The necessity for much tedious algebra is eliminated, and the resulting formulae are gen-
erally quite simple.

Section 2 will review the available asymptotic theory for simple correlation coef-
ficients and functions of a correlation matrix. Section 3 reviews some useful asymptotic
theory on testing linear hypotheses. This theory may be applied to obtain simplified tests
for certain hypotheses on equality of correlations. In Section 4 the basic theorem provid-
ing the asymptotic multivariate distribution of correlation coefficients between optimal
composites is derived. Optimal correlations to which this theorem applies are given in
Section 5, and a Monte Carlo study demonstrating the usefulness of the results obtained
is reported in Section 6.

2. Asymptotic Distribution of Correlation Coefficients

Let xi, x‘i, XR, and Xh be random variables with a multivariate distribution having
finite fourth-order moments. Define

#i = E(xi) (2.1)

t~ij : E(xi -- Iti)(x‘i -- It.i) (2.2)

ai‘ikh = E(x~ -- Itl)(x‘i -- Itj)(Xk -- Itk)(Xh (2.3)

Pij = ff ij(ff ii tT jj)- 1/2 (2.4)

Pijkh = ~ijkh(~il ~ jj ~kk ~hh)- 1/2 (2.5)

Then consider samples of N = n + 1 independent observations on variates x~, x j, Xk,
and ~h. We define the sample statistics

N

mi = N- ~ ~ x,~ (2.6)

N

s~ = n- ~ ~ (x,~ - m~)(x,~ - (2.7)

N

s~ = n- ~ ~ (x,~ - m~)(x,~ - m~)(x,~ -- m~)(x,~ (2.8)

z,i = (x,i - mi)sff ~/2 (2.9)

r~ = s~(s, s~)- ~/~ = n- ~ ~ z,, z,~ (2.10)

N

r Okh = S~kh(S, S ~ Skk Shh)- ~/2 = n- ~ ~ z,~ z,~ Z,k Z,n (2.11)

In the discussion which follows, we shall refer frequently to two Propositions.

Proposition 1. (Rao, 1973, Theorem 6a.2(iii)). Let s be a p* x 1 random vector, 
pendent on n, and t~ be a vector of constants of the same order, such that nl/2(s - a) has
an asymptotic distribution which is MVN(0, T) (i.e., a multivariate normal distribution
with mean vector 0 and variance-covariance matrix T). Let e(s) be a q x 1 vector (with
elements c~(s)) of functions of the elements of s, which is differentiable at 

Then nl/2{e(s) -- e(ff)} has an asymptotic distribution which is MVN(0, G), G = A’TA,
where A’ = dc/ds’ Is =. is the p* x q Jacobian matrix of c(s) evaluated 

Direct application of Proposition 1 to a consequence of the multivariate central limit
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theorem leads to the following general result on the asymptotic distribution of elements of
a correlation matrix.

Proposiiion 2. (Hsu, 1949; Isserlis, 1916; Steiger & Hakstian, 1982). Let x be a p x 
random vector having a multivariate distribution with finite fourth-order moments, and
population correlation matrix P = {Pig}- Let r be a random vector of order p(p- 1)/2
formed from the non-duplicated elements of the sample correlation matrix R, based on
N = n + 1 observations on x. Let p be formed from the nonduplicated elements of P.
Define r* = n1/2 (r - p), with elements r~.. Then r* has an asymptotic distribution which
is MVN(0, W) with variance-covariance matrix W having typical element ~bu, kh =Cov (r~,
r~h) given by

~lij, k~ = Pijkh + ~Pij Pkh(Piikk + Pjjk~ + Piihh + Pjjhh)

~P~s(Pi~kk Pijhh) (2.12)-- 2 Pij(Piikh + Pjjkh) +

Thus, in general, the asymptotic variances and covariances of correlation coe~cients
depend on fourth-order moments of the distribution of x. Consequently, an estimate of W
would involve estimates of all fourth-order moments.

It is convenient to consider a class of distributions where all elements of W are func-
tions only of the elements of P and of a single kurtosis parameter. This is the class of
elliptical distributions (cf. Devlin, Gnanadesikan, & Kettenring, 1976; Muirhead, 1982;
Muirhead and Waternaux, 1980).

Let x be a p x 1 vector variate with expected value p, covariance matrix E, and finite
fourth-order moments. We define the multivariate coe~cient of relative kurtosis of X (cf.
Browne, 1982), denoted by ~, to be Mardia’s (1970, 1974) coe~cient of multivariate
kurtosis divided by the corresponding coe~cient of multivariate kurtosis for a multi-
variate normal distribution:

% = E{(x - ~)’E-X(x ~)}~/p~ + 2)

If the distribution of x belongs to the elliptical family and x~, k = 1 ..... p, is any
k x 1 subvector of x, then the relative kurtosis of Xk is equal to that of x, i.e., ~k = ~- In
particular, all individual elements of x have the same marginal relative kurtosis. We
shall denote the common relative kurtosis of an elliptical distribution by ~. This may be
estimated by means of an estimate of %. An algorithm for obtaining an estimate of
p~ + 2)~ is given in Mardia and Zemroch (1975).

A convenient property of elliptical distributions is that the standardized fourth-order
moments, Pu~, are functions of the correlation coe~cients, Po, and the common relative
kurtosis coe~cient, ~:

Pijk~ = ~(Po Pk~ + Pik Pin + Pi~ Pj~) (2.13)

Substitution of (2.13) into (2.12) yields the following corollary to Proposition 

Corollary 2.1 If the distribution of x is elliptical with relative kurtosis r/, then:

~/ij, kh 1 2 2

-- Pij(PjkPjn + PikPin) -- Pkn(PjkPih + Pj~Pia)} (2.14)

The multivariate normal distribution is an elliptical distribution with relative kur-
tosis t/= 1. Replacement of t/by 1 in (2.14) yields the well known formula for the covari-
ance of correlation coefficients based on observations from a multivariate normal distri-
bution (Hsu, 1949; Olkin & Siotani, 1976; Pearson & Filon, 1898).



14 PSYCHOMETRIKA

3. Asymptotic Tests for Linear Hypotheses

Suppose that r is a k x 1 vector variate and that the asymptotic distribution of
nl/2(r - p) is MVN(0, W). We shall be concerned with tests of linear hypotheses of 
form

Ho: Mp = h (3.1)

where M is a specified g x k matrix of rank #, and h is a specified g x 1 vector. While, in
theory, M and h can have arbitrarily chosen elements, in the majority of practical situ-
ations h will be a null vector and the rows of M will contain either one + 1 and one - 1
with the remaining elements equal to zero (to test equality of two elements of p, or will
contain one + 1 with the remaining elements equal to zero to test equality of an element
of p to zero.

As an example we consider the ease where k = 4, and we wish to test for equality of
the first three elements of p, and for equality of the last element to zero. Then h = 0,
~/-- 3, and a possible choice for M is

M = 1 0 -- 1 (3.2)
0 0 0

If ~ is any consistent estimate of ~, then the asymptotic distribution under Ho of the
statistic

X2 = n(Mr - h)’(M~M’)-1(Mr (3.3)

will be chi-square with ~ degrees of freedom. This test statistic may be used to test Ho
against the general alternative where the elements of p are unconstrained.

While the formulation of Ho given in (3.1) and the test statistic given in (3.3) allow 
the testing for equality of elements of p, this approach does not provide estimates of the
equal elements of p. Such estimates may be obtained by means of a second, mathemat-
ically equivalent approach. Equation (3.1) will be true if and only if p can be expressed 
the form

H0: p = AO + p* (3.4)

where A is any (conveniently chosen) k x q matrix of rank q = k - ~, such that MA = O,
t9 is a ~ x 1 parameter vector, and p* = M’(MM’)-lh is a known k x 1 vector which is
null whenever h is null.

For example, (3.1) with M given by (3.2) and h = 0 implies, and is implied by (3.4)
with

A=(1 1 1 0)’ (3.5)

and p* = 0. Since q = 1, O is a single parameter which represents the unknown common
value of the first three elements of p.

The generalized least squares estimator of t9 is

~) = (A’t~ - 1A)- IA’~ - l(r - p*) (3.6)

and the asymptotic distribution of nl/2(~) - O) is MVN(0, {A’~-1A}-1). When using
(3.6), one may calculate the test statistic of (3.3) conveniently using the mathematically
equivalent form

X2 = n(r - ~3)’~-l(r - (3.7)
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where

~ = AO + p*. (3.8)

The results reviewed here, with k <_ ½p(p - 1) may be employed to test for patterns of
equality of elements of a single p x p correlation matrix (Steiger, 1980a, 1980b, Note 2) 
of elements of several independently estimated correlation matrices (Steiger, Note 1). 
the case where k = ½p(p - 1) so that p consists of all nonduplicated elements of the popu-
lation correlation matrix and q~ has the special form of (2.14) the generalized least squares
estimates (3.6) and test statistic (3.7) may be expressed in alternative forms which are 
efficient for computational purposes (Browne, 1977).

Any consistent estimate, ~’, of q~ may be employed. It has been found (Browne, 1977;
Steiger, 1980a,b) that, under the assumption of multivariate normality when ~/= 1 in
(2.14), it is preferable to replace the Pij in (2.14) by ordinary least squares estimates which
are elements of the vector

~ = A[(A’A)-1A’r] + p* (3.9)

rather than to use (2.10). When (2.12) was used in the Monte Carlo experiments of Section
6, the Pijkh were estimated using formulae corresponding to (2.11), and the p~ using formu-
lae corresponding to (3.9).

4. Correlations between Optimal Linear Composites

In this section we demonstrate why, and how, the method of Section 3 may be used
to test pattern hypotheses on a number of well-known correlational statistics, including
multiple correlations, partial correlations, and canonical correlations. First we will need

Proposition 3. Suppose that c(s, b) is a differentiable scalar valued function of two
vector valued arguments s and b, and that ~s) is a vector valued function of s which yields
a stationary point of e(s, b) with respect to b given s. That is:

Oc(s,Ob b) b = ~(s) = 

for all s in N(o), a neighborhood of a given point o. Consider the composite function
c*(s) = c[s, I~(s)]. If I~(s) is differentiable at s = 6 then c*(s) is differentiable at s 

8c*(S)~s - ~c(S,0s b) b=~(~)
(4.1)

Proof. By the chain rule,

Oc*(s) ~c(s, b) ~b’(s) ~c(s, b

_ 8c(S,~s b) b = ~s) + 

Result (4.1) has been applied in the development of "nested" (Ross, 1970) algorithms
for obtaining maximum likelihood estimates (e.g., Browne, 1979, p. 212; J6reskog, 1967, p.
450). In these applications a likelihood function c(s, b) was to be maximised with respect
to both s and b. An example is that of unrestricted factor analysis, where s represents
unique variances, and b factor loadings (e.g., J6reskog, 1967). In the present paper, result
(4.1) will be used in another manner, which is similar to that in Shapiro [1983]. Here 
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will be a vector variate representing sample variances and covariances, and c(s, b) will 
optimised with respect to b alone to provide weights for a linear composite of variables.
Proposition 3 will then be applied to derive the asymptotic distribution of c*(s) rather
than to provide a computational algorithm.

Proposition 4. Let the asymptotic distribution of nl/2(s -- o’) be multivariate normal,
with a null mean vector and covariance matrix T. Suppose that e(s, b) is a differentiable
q × 1 vector valued function of s and b. The vector valued function I~(s) yields a stationary
point of c(s, b) with respect to b given s, i.e.,

t~c’(s, b) [
= O, VseN(tt).

Let c*(s) = c[s, ~(s)] and let [I = ~(tt), so that c*(,) = e(tt, [I) = K, say. If ~s) 
entiable at s = ,, then:

(a) The p* x q Jacobian matrix A*’ = ~e*(e)/~s’ of e*(s) at, is equal to the 
Jacobian matrix A’ = ~c(e, [$)/c~s’ of ¢(s, Jl) at 

(b) nl/2{c*(s) - K} and nl/2(e(s, [I) - ~¢) have the same asymptotic distribution.

Proof. Application of Proposition 3 shows that each column of A* is equal to the
corresponding column of A so that part (a) follows. Part (b) follows immediately 
Proposition 1. []

We shall be concentrating on a situation where b is partitioned into q subvectors,
b = (b’~, b~, ..., b’q)’, and the ith element of c(s, b) depends only on hi: i.e., ci(s, b) = ci(s, 
Similarly, [i = (J)’~, [i~z ..... [i’q)’ where [Ii = I~(,).

Proposition 4(b) will be used to obtain the asymptotic distribution of c*(s) in situ-
ations where the asymptotic distribution of c(s, [I) is already known. This obviates tedious
algebra (necessary when implementing the delta method) involved in deriving the Jacobi-
an matrix A*’ of c*(s).

We shall be concerned with situations where the vector variate s is formed from the
p* = ½p(p + l) nonduplicated elements of a p x p sample covariance matrix, S, based on
n + 1 independent observations on x, and a is formed from the corresponding elements of
the population covariance matrix E. The elements ci(s, b~) of c(s, b) will be functions of 
general form

c~(s, hi) = g’~i Sg2~{(g’~ Sgi,)(g[, Sg2,)} (4.2)

where g~i = ~i(bl) and g2i = [~2i(bl) are two p x 1 vectors whose elements are equal either
to elements of bi or to the constants 0 or 1. Specific examples are given in Section 5. It is
clear from (4.2) that c~(s, hi) represents the correlation coefficient between g[ix and g[i 
Sample optimal weights are represented by [i~ = I~(s). Substitution of ¢/li = [~1i(~) 
{’2~ = 1~2~([~i) into (4.2) gives the sample optimal correlation coefficient c~’(s) = c~(s, ~i). 
is the sample correlation coefficient between 3~1i = ~i x and ~2i = "~i x, i.e,,

c~’(s) ci(s, f) ~) = r( .~2i) (4.3)

Corresponding population optimal weights are given by ~ = I~i(tt) with 71i = ~ti(D~)
and ’~2i = ~21(~i) yielding a population optimal correlation coefficient c~’(t~) = cl(t~, I$1), 
population correlation coefficient between Yl~ = ?~ x and Y2~ = ’~2i x.

The asymptotic joint distribution of the sample optimal correlation coefficients, c~’(s),
is required for testing for equality of the population optimal correlation coefficients, c~*(*),
using the methods of Section 3. Since the sample optimal weights, [~i, are stochastic and
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vary from sample to sample, the exact distribution of e*(s) will not be easy to obtain. It 
known, however, from Proposition 4 that the asymptotic distribution of e*(s) = e(s, ~) 
the same as that of c(s, [~). Since the elements, ci(s, [I) of e(s, [~) are simple correlation
coefficients between the linear composites Yli and Y2i,

c~(s, [~) = r(yl~, Y2~), (4.4)

their joint asymptotic distribution is known from Proposition 2 or Corollary 2.1. This will
involve population correlation coefficients and population standardised fourth order mo-
ments of the yl~ and Y21- These cannot be estimated directly from corresponding sample
correlation coefficients and standardized fourth order moments of the y~ and Y2i, since
the fl~ are not known (and the yx~ and Y2~ consequently cannot be calculated). Adequate
indirect estimates are available, however, since the sample correlation coefficients and
standardized fourth order moments of the 33~ and 3~2~ can be computed and will provide
consistent estimates of the population correlation coefficients and standardized fourth
order moments of the Yli and Y2~.

Therefore, the following procedure may be used to test for equality of elements of
e*(t~). Sample optimal weights are calculated, and the p x k matrices f’x and f’2 are
formed with the ~1~ and "~2i as columns. Then the 2k x 2k sample correlation matrix

of

LR~ R~’2J

= F_r;xl
= Lr -J

and the standardized fourth order sample moments for ~ are calculated. The diagonal
elements of the k x k nonsymmetric matrix RI’2 are the sample optimal correlations, or
elements of e*(s). Methods reviewed in Section 3 may then be applied to e*(s) to test 
equality of elements of e*(t~). The nondiagonal elements of R]’2, R~’x, and R~2 and the
standardized fourth order sample moments of ~ are employed to obtain the estimated
covariance matrix, ~, of e*(s) using Proposition 2 or Corollary 2.1. Thus, equality 
optimal correlations is tested in exactly the same manner as that of simple correlations by
replacing the original observations in x by the composite scores ~. Existing computer
programs [e.g., Steiger, 1979] for testing correlational pattern hypotheses may be em-
ployed, though one must remember that only pattern hypotheses on population corre-
lations corresponding to diagonal elements of R]’2 may be investigated.

5. Optimal Correlation Coefficients

In this section we shall review some types of optimal correlation coefficients whose
equality can be tested using the approach described in Section 4. Formulae for the sample
optimal correlation coefficients will be given. The corresponding population optimal cor-
relation coefficients are obtained by merely replacing the sample eovariance matrix, S, by
the population covariance matrix, Y., in the relevant formulae.

For brevity of notation the subscript "i" used previously to distinguish elements of
the vector, c*(s), of optimal correlation coefficients will be omitted, and c*(s) will represent
a single optimal correlation coefficient. In each case the correlation coefficient optimised
to yield c*(s) is of the form (cf. (4.2))

c(s, b) = g]SgE{(g’~Sgx)(g~ Sg2)} (5.1)

where the two p x 1 vectors gl and g2 are formed from elements of a weight vector b
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(usually partitioned as b = [b], b~]’), supplemented by constant elements equal to zero 
one. The gradient Oc(s, b)/Ob will be equal to zero when b assumes an "optimal" value
and the "optimal correlation coefficient" is c*(s) = c(s, ~). In each case we shall define

g2, and provide c(s, b), tgc(s, b)/0b, ~, )~1, and 
(a) Multiple Correlations. Consider, as an example, the multiple correlation of xl on

x2 = (x2, x3 ..... xp)’. Let

and g~ = (1, 0’), g~ = (0, b’). 

c(s, b) = b’s21{sl lb’$22 b} - 1/2 (5.2)

and the gradient is

~c(s, b)/c~b = {s2, - $22 b(b’s2ffb’S22 b)}{Sllb’S22 b}- (5.3)

which is equal to zero at

b = I~ = Sf21s21 (5.4)

This yields the multiple correlation coefficient

c*(s) = c(s, ~) {s~1S~)s21/$11}1/2, (5.5)

which is the maximum of c(s, b) with respect to b. All requirements of Proposition 4 are
satisfied, except when o2t = 0, since c(s, b) does not exist at b = ~ = 0. Consequently, the
methods of Section 4 do not apply if the population multiple correlation coe~cient is
zero.

The linear composites employed when applying the methods of Section 4 are p~ =
x~, the criterion score, and p~ = O’x~. Note that ~ differs only by an additive constant
from the usual predicted criterion score in multiple regression. Since the correlation coef-
ficients in R* will not be affected by a change of location of ~, the usual predicted
criterion score may be employed for pz.

(b) Partial Correlations. As an example we shall consider the partial correlation be-
tween xt and x~ eliminating the effect of x3 = (x3, xa, ..., xff. Let

[Sll $12 S;lq

L~, $32 $33J

and g~ = (1, 0, -b~), g~ = (0, 1, -b~), with b’ = (b~, b~). 

c(s, b) = ~2(~ ~2)- (5.6)
where V~k = S~k -- b)S3k -- b~s3~ + b~$33 bk; j = 1, 2; k = 1, 2 so that the gradient is given
by

dc(s, b)/db~ = {S~3 b. - s3. - v~ lv~.(Saa b~ - Sa~)}/v~; j = 1, 2; m = (5.7)

which is equal to zero at

b~ = ~ = S;?s~; j = ~, 2 t5.8)

This is a saddle point of c(s, b) and yields the partial correlation coe~cient

c*¢s) = c~s, ~) = Cs~ - s~: S;~s32)/{~s~ s~s;?s~l)~S~, - s~S;?S~l)}x/2 (5.9)
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All requirements of Proposition 4 are satisfied whenever the population partial corre-
lation c*(~) exists.

The linear composites employed when applying the methods of Section 4 are y~ =
x~ - ~)x3, j = 1, 2, which differ only by an additive constant from, and may be replaced
by, the usual regression residuals.

(c) Canonical Correlations. Let x’ = (x’~, x~) where 1 has Pl e lements and x2 has P2
elements, and let

with b’ = (b’~, b~).

FSll$121S = Ls21 s22d

The correlation coefficient between h’~x I and b~x2 is given by substituting g~ =
(b’~, 0’), g~ = (0’, b~) into (5.1) to 

C(S, b) = b’~S~. 2 b2/{(b~S 11b~)(b~ $22 b2)1/2
(5.10)

The gradient is given by

~C(S, b)/t~bj = (b~ Sjj b j) - i/2(b~n Stara b,n)- I/2

× (S~,~ b,~ - (b~S~b~)-~(b~S~r,,b,,,)S~b~}; j = I, 2; m = 3 -j (5.11)

Let ~k be the kth largest characteristic root of the matrix S-::$12 S~2~$21 {k <_ Min

(Pl, P2)} and let uk be the corresponding characteristic vector standardized so that
u~, Skk Uk = 1.

The gradient is equal to zero at

bl = ~1 = UR. k = 1, 2 ..... Min (pl, P2) (5.12a)

112 = ~2 = S~21S21~1/~ - 1/2 (5.12b)

and the corresponding value of c(s, b) is the kth canonical correlation,

c*(s) = c(s, ~) = ~- (5.13)

Thus, c(s, b) has Min (p~, P2) stationary points, and the stationary values are 
canonical correlations. The requirements of Proposition 4 are satisfied if and only if the
population canonical correlation under consideration is distinct (since a characteristic
vector is differentiable if and only if the corresponding characteristic root is distinct). Note
that this implies that the methods of Section 4 do not apply if all canonical correlations
are zero. While the methods of Section 4 are applicable to all canonical correlations, in
most practical situations the largest canonical correlation will be of interest.

The required linear composites are .ft = ~x~ and 3~2 = ~ x2, but may be replaced
by the usual canonical scores since this only involves a change of location.

(d) An internal correlation coefficient. This optimal correlation coefficient was
derived by Venables (1976) as a union-intersection test statistic for sphericity. Let g~ = 
and g2 = b2 in (4.2) so that

c(s, b) b’~Sb2/{(b’~Sb~)b’2 Sb2)}I/2 (5.14)

This correlation coefficient is maximized subject to the restriction b’~b2 = 0, so that
Proposition 4 will be applied to the Lagrangian function

f(s, b, m) = c(s, b) mb’~b2 (5.15)
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rather than to c(s, b) [cf. Shapiro, 1983, Sections 4 and 6]. The gradient is given by:

~f/~bl = {(b’lSbl)(b’~Sb2)}-l/2{Sb2 - (b’~Sbl)-l(b’,Sb2)Sb~} mb2 (5.16a)

3f/db2 = {(b~Sbl)(b~ Sb2)} -~/z{Sb~ - (b~ Sb2)-~(b’~Sbz)Sbz} - (5.16b)

~3f/~m = b’~b2 (5.16c)

Let ~ and ,~p be two characteristic roots of S, and let u~ and up be the corresponding
characteristic vectors standardized to unit length. The gradient is equal to the null vector
if

b~ = ~1 = u~ + up (5.17a)

b~ = ~z = u~ - up (5.17b)

m = tl = 2,{~p/(,{1 + ~p)2 (5.17c)

and the corresponding function value is

c*(s) =f(s, ~, ~) = c(s, I~) = (L - ~p)/(’~ (5.18)

In order to maximize c*(s), ~ and ,~p are chosen to be the largest and smallest character-
istic roots of S.

The requirements of Proposition 4 are satisfied if and only if both the largest and
smallest characteristic roots of E are distinct. Consequently, the methods of Section 4 do
not apply if the population internal correlation coefficient c*(o) is zero.

The linear composites employed are 3~ = u~x + u~x and 3~2 = u~x - u~x.
A different internal correlation coefficient has been proposed by Schuenemeyer and

Bargmann (1978) as a union-intersection test statistic for independence. The covariance
matrix, S is replaced throughout by the correlation matrix, R. The methods of Section 4
do not apply to this coefficient, since replacement of S by R in (5.14), and fixing b~ and 
does not yield a statistic with the distribution of a simple correlation coefficient.

6. Some Monte Carlo E~idence

The statistics we have described are easy to compute, given that a program capable
of testing for equality of correlations is available. One must keep in mind, however, that
these are large sample statistics, and that, for asymptotically distribution free (ADF) tests,
estimation of 4th order standardized moments is required. The r~ will have large stan-
dard errors at small sample sizes, and this may lead to unstable estimates of the ~k~, ~n
under some conditions. Hence, these statistics must be used with considerable caution
when N is not truly large.

However, we also emphasize that, although caution is necessary, the above concerns
are not cause for rejecting this approach. One must remember that the estimates of the
~b~, ~n are rather complex combinations of the r~, and that this recombination, which is
compounded in effect when a chi-square quadratic form statistic of equation (3.3) or (3.7)
is calculated, may lead to considerable "smoothing" of the performance of the test statis-
tic. Given the asymptotic properties, the "smoothing" must, of course, occur eventually,
and the question of interest is whether it occurs at reasonably small sample sizes. One
way of approaching this question is through Monte Carlo simulation studies. Unfortu-
nately, these studies, when applied to methods as complex and flexible as ours, have
serious limitations, and are (if results are positive, at least) seldom conclusive. There are
many hypotheses of interest, many parameters which might be varied, and the simulation
(though the statistics are inexpensive in individual applications) requires a considerable
investment in computer time, even when only a few special cases are examined.
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Here we will make no pretense of being exhaustive in our assessment; indeed, we will
be highly selective. Our purpose is simply to alleviate justifiable concerns with some rele-
vant evidence. It should be remembered that when the assumption of an elliptical or
multivariate normal distribution is tenable, the approach we recommend may be used
with (2.16), and the P~jkh of (2.12) need not be estimated.

We now present some brief Monte Carlo evidence assessing the Type I error rate
performance of ADF tests on multiple and partial correlations. We examine the per-
formance of the tests under two parent distributions, the multivariate normal and the
lognormal. The lognormal, as has been demonstrated on several occasions (see, e.g.,
Duncan & Layard, 1973; Steiger, Note 2) produces, because of its high kurtosis, extremely
poor performance on a variety of Normal Theory correlation tests. It is a severe test of
any ADF procedure.

In the studies which follow, multivariate normal distributions were generated by (a)
taking uniform independent variates produced by a linear congruential random number
generator, (b) using the rectangle wedge-tail algorithm (Knuth, 1969) to obtain indepen-
dent standard normal variates, and (c) linearly recombining these variates using 
Cholesky factor of the desired correlation matrix. Lognormal random numbers with the
desired correlational structure were produced in much the same way, except that, in stage
(c) above, a Cholesky factor of a "predistorted" correlation matrix with elements p~ = 
[pij(e - l) q- 1], with pi~ the desired correlations, was used. Then, a stage (d) was added

in which the normal random numbers generated in stage (c) were transformed via y = exp
(-x), yielding, by well-known theory, marginally lognormal variates with the desired cor-
relations p~. In all conditions there were 500 Monte Carlo replications. In all cases, tests
were based on a sample size of 150. We now describe the two main simulation conditions,
and the data obtained.

(A) Equality of Dependent Multiple Correlations. A criterion and a set of predictors
were each measured twice. The two multiple correlations were then compared for equal-
ity, using the ADF procedure described in Sections 4 and 5. Specifically, the criterion and
predicted scores from each regression analysis were treated as 4 variables, and the hypoth-
esis of equal multiple correlations was tested as a correlational pattern hypothesis of the
form P12 = fl34, using the methods of Section 3. In this case the vector p in Equations
(3.1) and (3.4) contains just two elements, while M = (1, - l) and A’ = (1, 

For simplicity, all off-diagonal correlations in the population correlation matrices
were set to a common value.

A 2 x 2 x 3 (Distribution x Number of Predictors x Level of Correlation) factorial
design was employed, in which there were two distributions (MVN and Lognormal), 
sizes of predictor set (2 and 5 variables) and 3 levels of correlation (all off-diagonal ele-
ments of P were either .3, .6, or .9).

Empirical Type I error rates were tabulated for a number of nominal cut-off points.
For simplicity, we present data from p = .05 only, since data from other points are essen-
tially redundant. The results in Table 1 are, basically, quite encouraging, especially when
one remembers that, if the true Type I error rate is .050, the standard error of our esti-
mates is about .007. In this context, we see that the results for the normal distribution are,
essentially, "right on" while those for the lognormal show a slight, but reasonably tolero
able tendency toward excessive rejections.

(B) Equality of/912 and P12.3. To test this hypothesis, the variables xL3 and x2.3
were calculated as regression residuals from the sample linear regression, and were input
along with x1 and x2 as four variables to the ADF procedure. The null hypothesis was
then tested as a hypothesis of the form P12 = ,034-

The hypothesis was tested on 15 different population correlation matrices, repre-
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TABLE I.

Empirical Type I Error Rates (Nominal p = .05)
Test Comparing 2 Dependent Multiple Correlations

Distribution

Normal

Lognormal

Number o~ Predictors

Correlation 2 5

.3 .05# .050

.6 ,050

.9 .0#6

.3 .062

.6 .062 .070

.9 .050

senting a variety of different values. The conditions, and the resulting empirical Type I
error rates (nominal p = .05), are summarized in Table 

Overall, the test procedure performs well with both normal and lognormal data. A
notable exception seems to be condition 1. In this condition, r12 and r12.3 are highly
correlated, and so the variance-covariance matrix of rlz and r]E.a is very nearly singular.
This may well lead to an unstable estimate of the variance-covariance matrix of these two
statistics in this case.

TABLE 2.

Empirical Type I Error Rates (p=.05)
Test for Comparing 012 with 012.3

Condition

PI3 023 PI2(=PI2.3 ) Normal Lognormal

1 .10 .30 .5901 .018 .018
2 .10 .50 .3615 .0#8 .0#6
3 .lO .70 .2#18 .05# .060
# .10 .90 .1589 .038 .0#8
5 .lO .95 .1378 .066 .086
6 .30 .50 .8627 .060 .050
7 .30 .70 .6588 .038 .05#
8 .30 .90 .#622 .05# .05#
9 .30 .95 .#059 .062 .060
lO .50 .70 .9173 .0#2
ll .50 .90 .7229 .05# .0#8
12 .50 .95 .6511 .062 .050
13 .70 .90 .91#8 .0#8 .0#2
l# .70 .95 .8558 .036 .038
15 .90 .95 .9897 .0#8 .03#



JAMES H. STEIGER AND MICHAEL W. BROWNE 23

7. Conclusions

Results have been presented which lead to a variety of interesting asymptotic signifi-
cance tests on multiple, partial, and canonical correlations. The technique involves input
of ordinary predicted scores, residual scores, and/or canonical variate scores into existing
programs for testing pattern hypotheses on correlations. The technique allows tests on
functions of a correlation matrix without extensive analytic or numerical differentiation,
since it does not require use of the multivariate delta theorem. Preliminary Monte Carlo
results indicated that two simple tests for (a) comparing two multiple correlations, and (b)
comparing a correlation with a partial correlation worked rather well for either normal or
lognormal data. Additional Monte Carlo research should be directed toward particular
applications of special interest.
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