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Noncentrality-based confidence interval estimates provide a superior alternative
to significance testing for assessing model fit in most standard areas of behavioral
statistics, from the t test through multiple regression and analysis of variance to
the analysis of covariance structures. These confidence intervals provide all the
information inherent in a significance test, and more, and deal with situations
more traditional interval estimates cannot handle. For example, in the analysis of
variance, noncentrality interval estimation allows computation of exact confidence
intervals for (a) standardized measures of effect size and (b) statistical power. In
multiple regression, one can compute an exact confidence interval on the squared
multiple correlation. Because of computational complexities, noncentrality-based
confidence intervals seldom have been computed, except in the analysis of
covariance structures. Most of the reasons for not using these interval estimates
are no longer relevant in the microcomputer age. In this chapter, we review some
of the standard techniques, and provide computational examples.

Behavioral statistics has been, and continues to be, dominated by the signifi-
cance testing tradition. Nearly every major textbook in behavioral statistics
spends far more time and energy on the theory and mechanics of significance
testing than on any other topic. Periodically, some of the more authoritative writ-
ers in our field have questioned this. The list of names includes many (Cohen,
Meehl, Guttman, Rozeboom, to name just a few) who have imposing reputations
for technical expertise, but also share a common reputation for perspective,
manifested in an ability to sort out what is important and what is right.

Some important early contributions to the literature on hypothesis testing and
interval estimation were reviewed recently by Cohen (1994). Most of the
authors, including Cohen, concentrate on the fundamental logical problems and
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limitations of significance testing, and make broad suggestions for improving the
status of practice. A key suggestion that has surfaced repeatedly in these writings
is that, as an analytic tool, the confidence interval is superior to the significance
test. Schmidt and Hunter (1997) echo this view in chapter 3 of this volume,
while providing a succinct critique of many of the arguments often used to de-
fend significance testing. Because we agree fundamentally with many of the
opinions of Rozeboom (1960), Meehl (1978), Guttman (1977), Cohen (1994),
and Schmidt and Hunter (1997), we see no need to review all of their arguments
here; but to keep the account relatively self-contained, we review a few key ad-
vantages of confidence intervals. Our fundamental contribution, however, is to
suggest a significant change in the statistical methodology routinely employed in
the most common situations in behavioral statistics. We suggest improved tech-
niques that we think have real merit, and that, if given wide use, offer such sub-
stantial advantages that they will surely accelerate the ascendancy of interval
estimation. Some of these implementations (such as the noncentrality-based
techniques in structural modeling) are relatively new but already quite popular.
Some are old, but hardly ever discussed in textbooks. All offer substantial ad-
vantages over the significance tests, and in some cases over other interval esti-
mates currently in use. All are computer intensive, and require very careful
software implementation. This latter fact explains why they have seldom been
employed, but why their time finally may have arrived.

We begin by reviewing a situation familiar to us all—the simple two-group
experiment based on two independent samples. We review the standard interval
estimation procedures, then discuss an alternative standardized confidence inter-
val discussed by Hedges and Olkin (1985), but not computationally practical at
the time their book was written. We show why this interval estimation approach
is superior, not only to the standard 7 test, but also to the standard confidence in-
terval on mean differences discussed in textbooks. We then extend this idea
through the analysis of variance, to the analysis of covariance structures, to mul-
tiple regression and beyond. So our scope is quite broad. Almost all the signifi-
cance testing procedures currently recommended in major behavioral statistics
books could be replaced with the superior confidence interval approaches we
discuss here.

USE AND ABUSE OF SIGNIFICANCE TESTING LOGIC

In this section, we argue, as do numerous colleagues, that significance tests,
though almost always reported in the analysis of social science data, are seldom
to be preferred, and often simply inappropriate. We begin by returning briefly to
first principles. Suppose we are performing a simple two-group experiment in
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TABLE 9.1
2 X2 Table for Statistical Decisions

State of the World

Hy H,
Hy Correct Type II Error
Acceptance
Decision B
H, Type I Error Correct
a Rejection

which an experimental group is compared to a control group. The theoretical
question of interest is frequently phrased as, “Has the experimental treatment
made any difference?”

In this case, the statistical null and alternative hypotheses are
Hy: = Uy Hy: g # .

We test this hypothesis, in practice, by taking two samples, often (but not
necessarily) of equal size, and computing a two (independent) sample Student’s ¢
statistic. If the statistic’s absolute value is sufficiently large, we reject H,. Other-
wise, loosely speaking, we “accept” (or, perhaps more appropriately, “fail to re-
ject”) H,.

Back in our undergraduate statistics course, we were taught that, in the sig-
nificance testing approach, four things can happen, two of them bad. We all
memorized a little 2 X2 table that summarized the possibilities and attached sta-
tistical jargon to them (See Table 9.1).

Most of us were steeped in the grand tradition of Educational and Psycho-
logical Statistics, i.e., that «, the Type I error rate, must be kept at or below .05,
and that, if at all possible, S, the Type II error rate, must be kept low as well.

The conventions are, of course, much more rigid with respect to « than with
respect to S. Seldom, if ever, is « allowed to stray above the magical .05 mark.
Let’s review where that tradition came from.

In the context of significance testing, we can define two basic kinds of situa-
tions, reject-support (RS) and accept-support (AS). In RS testing, the null hy-
pothesis is the opposite of what the researcher actually believes, and rejecting it
supports the researcher’s theory. In a two group RS experiment, the experimenter
believes the treatment has an effect, and seeks to confirm it through a signifi-
cance test that rejects the null hypothesis.
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In the RS situation, a Type I error represents, in a sense, a “false positive” for
the researcher’s theory. From society’s standpoint, such false positives are par-
ticularly undesirable. They result in much wasted effort, especially when the
false positive is interesting from a theoretical or political standpoint (or both),
and as a result stimulates a substantial amount of research. Such follow-up re-
search will usually not replicate the (incorrect) original work, and much confu-
sion and frustration will result.

In RS testing, a Type II error is a tragedy from the researcher’s standpoint,
because a theory that is true is, by mistake, not confirmed. So, for example, if a
drug designed to improve a medical condition is found (incorrectly) not to pro-
duce an improvement relative to a control group, a worthwhile therapy will be
lost, at least temporarily, and an experimenter’s worthwhile idea will be dis-
counted.

As a consequence, in RS testing, society, in the person of journal editors and
reviewers, insists on keeping « low. The statistically well-informed researcher
makes it a top priority to keep £ low as well. Ultimately, of course, everyone
benefits if both error probabilities are kept low, but unfortunately there is often,
in practice, a trade-off between the two types of error.

The RS situation is by far the more common one, and the conventions rele-
vant to it have come to dominate popular views on statistical testing. As a result,
the prevailing views on error rates are that relaxing « beyond a certain level is
unthinkable, and that it is up to the researcher to make sure statistical power is
adequate. One might argue how appropriate these views are in the context of RS
testing, but they are not altogether unreasonable.

In AS testing, the common view on error rates we described above is clearly
inappropriate. In AS testing, H, is what the researcher actually believes, so ac-
cepting it supports the researcher’s theory. In this case, a Type I error is a false
negative for the researcher’s theory, and a Type II error constitutes a false posi-
tive. Consequently, acting in a way that might be construed as highly virtuous in
the RS situation, for example, maintaining a very low Type I error rate like .001,
is actually “stacking the deck” in favor of the researcher’s theory in AS testing.

In both AS and RS situations, it is easy to find examples where significance
testing seems strained and unrealistic. Consider first the RS situation. In some
such situations, it is simply not possible to have very large samples. An example
that comes to mind is social or clinical psychological field research. Researchers
in these fields sometimes spend several days interviewing a single subject. A
year’s research may only yield valid data from 50 subjects. Correlational tests, in
particular, have very low power when samples are that small. In such a case, it
probably makes sense to relax @ beyond .05, if it means that reasonable power
can be achieved.
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On the other hand, it is possible, in an important sense, to have power that is
too high. For example, one might be testing the hypothesis that g, = u, with
sample sizes of a million in each group. In this case, even with trivial differences
between groups, the null hypothesis would virtually always be rejected.

The situation becomes even more unnatural in AS testing. Here, if n is too
high, the researcher almost inevitably decides against the theory, even when it
turns out, in an important sense, to be an excellent approximation to the data. It
seems paradoxical indeed that in this context experimental precision seems to
work against the researcher.

To summarize, in RS research:

1. The researcher wants to reject H,,.

2. Society wants to control Type I error.

3. The researcher must be very concerned about Type II error.

4. High sample size works for the researcher.

5. If there is “too much power,” trivial effects become “highly significant.”

In AS research:

1. The researcher wants to accept H,,.

2. “Society” should be worrying about controlling Type II error, although it
sometimes gets confused and retains the conventions applicable to RS
testing.

3. The researcher must be very careful to control Type I error.

4. High sample size works against the researcher.

5. If there is “too much power,” the researcher’s theory can be “rejected” by a
significance test even though it fits the data almost perfectly.

Strictly speaking, the outcome of a significance test is the dichotomous deci-
sion whether or not to reject the null hypothesis. This dichotomy is inherently
dissatisfying to psychologists and educators, who frequently use the null hy-
pothesis as a statement of no effect, and are more interested in knowing how big
an effect is than whether it is (precisely) zero. This has led to behavior like put-
ting one, two, or three asterisks next to results in tables, or listing p levels next to
results, when, in fact, such numbers, across (or sometimes even within!) studies
need not be monotonically related to the best estimates of strength of experi-
mental effects, and hence can be extremely misleading. Some writers (e.g.,
Guttman, 1977) view asterisk-placing behavior as inconsistent with the founda-
tions of significance testing logic.

Probability levels can deceive about the “strength” of a result, especially
when presented without supporting information. For example, if, in an ANOVA
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table, one effect had a p level of .019, and the other a p level of .048, it might be
an error to conclude that the statistical evidence supported the view that the first
effect was stronger than the second. A meaningful interpretation would require
additional information. To see why, suppose someone reports a p level of .001.
This could be representative of a trivial population effect combined with a huge
sample size, or a powerful population effect combined with a moderate sample
size, or a huge population effect with a small sample. Similarly a p level of .075
could represent a powerful effect operating with a small sample, or a tiny effect
with a huge sample. Clearly then, we need to be careful when comparing p lev-
els.

In AS testing, which occurs frequently in the context of model fitting in fac-
tor analysis or “causal modeling,” significance testing logic is basically inappro-
priate. Rejection of an “almost true” null hypothesis in such situations frequently
has been followed by vague statements that the rejection shouldn’t be taken too
seriously. Failure to reject a null hypothesis usually results in a demand for cum-
bersome power calculations by a vigilant journal editor. Such problems can be
avoided by using confidence intervals.

THE VALUE OF INTERVAL ESTIMATES

Much psychological research is exploratory. The fundamental questions we are
usually asking are “What is our best guess for the size of the population effect?”
and “How precisely have we determined the population effect size from our
sample data?” Significance testing fails to answer these questions directly. Many
a researcher, faced with an “overwhelming rejection” of a null hypothesis, can-
not resist the temptation to report that it was “significant well beyond the .001
level.” Yet we have seen previously (and demonstrate conclusively with numeri-
cal examples in a subsequent section) that a p level following a significance test
can be a poor vehicle for conveying what we have learned about the strength of
population effects.

Confidence interval estimation provides a convenient alternative to signifi-
cance testing in most situations. Consider the 2-tailed hypothesis of no differ-
ence between means. Recall first that the significance test rejects at the o sig-
nificance level if and only if the 1 — « confidence interval for the mean differ-
ence excludes the value zero. Thus the significance test can be performed with
the confidence interval. Most undergraduate texts in behavioral statistics show
how to compute such a confidence interval. The interval is exact under the as-
sumptions of the standard ¢ test. However, the confidence interval contains in-
formation about experimental precision that is not available from the result of a
significance test. Assuming we are reasonably confident about the metric of the
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FIGURE 9.1 Confidence intervals reflecting different degrees of precision
of measurement.

data, it is much more informative to state a confidence interval on u, — x, than
it is to give the p level for the ¢ test of the hypothesis that s, — 4, = 0. In sum-
mary, we might say that, in general, a confidence interval conveys more infor-
mation, in a more naturally usable form, than a significance test. This is seen
most clearly when confidence intervals from several studies are graphed along-
side one another, as in Figure 9.1.

Figure 9.1 shows confidence intervals for the difference between means for 3
experiments, all performed in the same domain, using measures with approxi-
mately the same variability. Experiments 1 and 3 yield a confidence interval that
fails to include zero. For these experiments, the null hypothesis was rejected.
The second experiment yields a confidence interval that includes zero, so the
null hypothesis of no difference is not rejected. A significance testing approach
would yield the impression that the second experiment did not agree with the
first and the third.

The confidence intervals suggest a different interpretation, however. The first
experiment had a very large sample size, and very high precision of measure-
ment, reflected in a very narrow confidence interval. In this experiment, a small
effect was found, and determined with such high precision that the null hypothe-
sis of no difference could be rejected at a stringent significance level.
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The second experiment clearly lacked precision, and this is reflected in the
very wide confidence interval. Evidently, the sample size was too small. It may
well be that the actual effect in conditions assessed in the second experiment was
larger than that in the first experiment, but the experimental precision was sim-
ply inadequate to detect it.

The third experiment found an effect that was statistically significant, and
perhaps substantially higher than the first experiment, although this is partly
masked by the lower level of precision, reflected in a confidence interval that,
though narrower than Experiment 2, is substantially wider than Experiment 1.

Suppose the 3 experiments involved testing groups for differences in 1Q. In
the final analysis, we may have had too much power in Experiment 1, as we are
declaring “highly significant” a rather miniscule effect substantially less than a
single 1Q point. We had far too little power in Experiment 2. Experiment 3
seems about right.

Many of the arguments we have made on behalf of confidence intervals have
been made by other authors as cogently as we have made them here. Yet, confi-
dence intervals are seldom reported in the literature. Most important, as we
demonstrate in the succeeding sections, there are several extremely useful confi-
dence intervals that virtually never are reported. In what follows, we discuss why
the intervals are seldom reported, sow they can be computed, and where soft-
ware performing all these techniques may be obtained.

REASONS WHY INTERVAL ESTIMATES ARE SELDOM REPORTED

In spite of the obvious advantages of interval estimates, they are seldom em-
ployed in published articles in psychology. On those infrequent occasions when
interval estimates are reported, they are often not the optimal ones. There are
several reasons for this status quo:

1. Tradition. Traditional approaches to psychological statistics emphasize
significance testing much more than interval estimation.

2. Pragmatism. In RS situations, interval estimates are sometimes embar-
rassing. When they are narrow but close to zero, they suggest that a
“highly significant” result may be statistically significant but trivial. When
they are wide, they betray a lack of experimental precision.

3. Ignorance. Many people are simply unaware of some of the very valuable
interval estimation procedures that are available. For example, the vast
majority of psychologists are simply not aware that it is possible to com-
pute a confidence interval on the squared multiple correlation coefficient.
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The procedure is not discussed in standard texts, and it is not implemented
in major statistical packages.

4. Lack of availability. Some of the most desirable interval estimation proce-
dures are computer intensive, and are not implemented in major statistical
packages like SAS, SPSS, STATISTICA, and so on. This makes it unlikely
that anyone will try the procedure.

CONFIDENCE LIMITS, CONFIDENCE INTERVALS, AND THE
INVERSION APPROACH TO INTERVAL ESTIMATION

In this section, we review the basic definition of a confidence interval, and the
simple approach used to generate the simple confidence intervals found in most
textbooks. Then we describe the less conventional, more computer-intensive ap-
proach which allows much more interesting and useful intervals to be derived.
Here the discussion becomes somewhat more technical, and we employ nota-
tions that are common in mathematical statistics texts, but that the typical reader
with a basic background in introductory applied statistics texts may find slightly
intimidating. We try to strike a balance that provides sufficient, but not extrane-
ous, detail. To begin, suppose we have a sample on n independent observations
from some population. The “observations” can be individual numbers (e.g.,
measuring the heights of n people) or lists of numbers (measuring the height,
weight, and age of n people). Suppose we use the letter X to stand for the data. A
“statistic” is any function of the numbers in X. We can refer to statistics generi-
cally by using the standard mathematical notation for functions. So, for example,
if we wish to discuss “statistics calculated on X in very general terms, we could
use a notation like 4(X). One can calculate numerous different statistics on the
same data. For example, the sample mean of the heights would be one function,
the correlation between height and weight another.

A common problem in statistics is to try to put limits on the value of an un-
known parameter on the basis of fallible data. (We use the term parameter in the
broad sense to refer to some numerical characteristic of a statistical population,
as opposed to the strict sense, i.e., a formal argument of a probability distribution
function.) For example, a politician might wish to estimate, on the basis of a
modest opinion poll, the maximum level of support he or she is likely to receive
in an upcoming election. Confidence limits and confidence intervals are tech-
niques that frequently are employed to construct such limits.

An upper confidence limit (or upper confidence bound) is a statistic that, over
repeated samples of size n, exceeds an unknown parameter € a certain propor-
tion of the time. For example, function B(X) is a 1 — & upper confidence limit
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for @ if, over repeated samples, the probability that B(X) is greater than or equal
to dis equal to 1 — ¢, or, in mathematical notation,

Pr(B(X)26)=1-aq. 9.1)

The basic reason behind the use of an upper confidence limit is to arrive at a
number that one is quite confident exceeds the parameter. Note, one can seldom
if ever be absolutely sure a statistic is greater than the unknown parameter, be-
cause the data may, through bad luck, be extremely unrepresentative of the
population. Think of ¢ in the preceding expression as an error rate. Suppose, for
example, it is .05, and so 1 — & =.95. Then the preceding equation says that, if
one takes a sample of data X and computes the statistic B(X), it will, in the long
run, be above the parameter value with probability .95, or 95% of the time. If
B(X) is used as a “statistical upper bound” for the parameter, it will be wrong
about 5% of the time. It is common, after computing B(X), to say that one is
“95% confident that @ is below B(X),” or that one is “95% confident that & does
not exceed B(X).” To see why this might be useful, consider the opinion poll dis-
cussed earlier. Suppose the 95% upper confidence limit on the proportion of
people intending to vote for the candidate is .65. The pollster could report back
to the politician that “we are 95% confident your current support level is no
greater than 65%.” As another example, suppose an item is manufactured, and
the parameter @ of interest is the failure rate for the item. The goal is to be rea-
sonably certain that the failure rate is below a certain value.

In this case, one would frequently perform “reliability testing,” by taking a
sample X and computing an upper confidence limit for 8, the proportion of items
that are defective. Suppose the upper limit is .001, or .1%. Then you might say “I
am 95% confident that the defect rate is less than or equal to .1%.”

Similar situations exist when one is establishing lower boundaries for a pa-
rameter, in which case lower confidence limits are computed.

A lower confidence limit (or lower confidence bound) is a statistic that is less
than the unknown parameter a certain proportion of the time. A function A(X) of
the observed data X is a 1 — & lower confidence limit for @ if, over repeated
samples,

Pr(A(X)<6)=1-a. 9.2)

For example, a pollster might report to a politician that “I am 95% confident
your support level is no worse than 47%.” The problem with confidence limits is
that they provide, by themselves, no indication of precision of measurement. In
general, the less authoritative your database, the further you have to move a
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confidence limit up (in the case of an upper limit) or down (in the case of a
lower limit) in order to bound the parameter reliably. Returning to the political
opinion poll, if the sample is moderately large, the pollster might report a lower
limit of 44%, whereas in the same situation if the sample is quite small, the
lower limit might have to be reported as 35% in order to gain the same degree of
confidence. So, in order to be 95% confident, the political pollster would have to
report a “minimum level of support” that is unduly pessimistic. Consequently,
upper and lower confidence limits usually are combined to yield a confidence
interval (A(X), B(X)), whose endpoints surround the parameter 8 a certain
proportion of the time. A(X) and B(X) bound a 1— a confidence interval
for @ if, over repeated samples,

Pr(A(X)<6<B(X))=1-a. (9.3)

In practice, one usually constructs the confidence interval by choosing A(X)
and B(X) to be, respectively, lower and upper 1 — /2 confidence limits so that
the confidence interval is symmetric.

The advantage of a confidence interval is that the width of the interval pro-
vides a ready indication of precision of measurement. That is, if the sample es-
timate has low sampling variability and high precision of estimate, then even a
narrow confidence interval will bracket the true parameter a high percentage of
the time, over repeated samples. Thus, the outcome of the confidence interval
calculation is a report of a parameter value, together with an indication of how
precisely it has been determined. In many situations involving exploratory re-
search, this outcome more accurately reflects what an experimenter is hoping to
learn from the data than a significance test does. So, for example, if the pollster
reports “I am 95% confident that your support level is between 46% and 54%,”
the politician realizes that the election is up for grabs and that the support level
is roughly 50% give or take 4%. This is probably more useful to the politician
than being told that “a test of the hypothesis that your support level is 50% was
not rejected.” The politician is not really interested in whether the support level
is exactly 50%—there is something artificial about testing for the significance of
such a hypothesis. Rather, the key interest is in the best estimate of the support
level, and how precise that estimate is. The location of the confidence interval,
and its width, provide such information. If the politician feels that level of preci-
sion is inadequate, the pollster can report (based on statistical theory) that halv-
ing the width of the confidence interval will require quadrupling the size of the
opinion poll!

Most confidence intervals discussed in standard textbooks are derived by
simple manipulation of a statement about interval probability of a sampling dis-
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tribution. For example, confidence intervals are usually introduced in terms of a
simple Z statistic for testing the hypothesis ¢z = a when the population distribu-
tion is normal and the population standard deviation o is known. If # is the sam-
ple size, and X is the ordinary sample mean based on the n observations, then
the sampling distribution of the sample mean is normal, with a mean of 4, and a
standard deviation (usually called the “standard error of the mean”) of d/+/n. In
any normal distribution, the probability that a score will fall between standard
score values of —1.96 and +1.96 is .95. To convert the sample mean to its stan-
dard score equivalent, one subtracts its mean (x) and divides by its standard de-
viation (0/+/n ) to construct a test statistic Z,

Z= (9.4)

X-p
a/\n’
The resulting test statistic, in the long run, will fall between the 2.5% and

97.5% points of the standard normal curve (values of —1.96 and +1.96) with
probability .95. As an inequality, these facts can be stated

Pr(~196 < Z < +196) = 95, 9.5)
or
pr| -196< X K < 4196 | = 95. (9.6)
o/\n

The confidence interval for x is derived by manipulating this interval alge-
braically. Because o and n are both positive, we may multiply all three sections
of the inequality by G/ J/n without altering its correctness. We then obtain

Pr(—l.%i <X-pus +1.96i) =95, 9.7)

n Vn

One way of interpreting this inequality statement is that 95% of the time, the
distance between x and X is less than 1.96G/x/n . That is, 95% of the time U is
within a certain distance of X . Of course, this also means that 95% of the time
X is within the same distance of . (If you and I are walking down the street
and 95% of the time you are within 3 feet of me, then 95% of the time I am
within 3 feet of you.) What this means, in turn, is that if we take X and con-
struct an interval by adding and subtracting 1.960/+/n from it, that interval will
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have x within its endpoints 95% of the time in the long run. Such insight is not
necessary to derive the confidence interval, however. One may simply continue
manipulating the interval algebraically. First, subtract X from all three sections
of the inequality. Then multiply all three sections by —1, and reverse the direc-
tion of the inequality. This leads to the following expression:

Pr[)_( ~196-L << X+ 1.96ij = 95. 9.8)

N "

The expression states that if one constructs an interval with endpoints
X+ 1.960/ n , this interval will contain the true parameter (1) 95% of the time
in the long run.

A number of simple inequalities can be converted into confidence intervals in
this way. Typically, one finds, in elementary to intermediate texts, confidence
intervals for (a) a single mean, (b) the difference between two means, (c) a single
contrast on means, (d) a single variance, (¢) the ratio of two variances, (f) a sin-
gle correlation, and (g) a single proportion. An element common to the preced-
ing intervals is that an interval statement about the distribution of the null distri-
bution of a test statistic can be manipulated easily to yield the desired confidence
interval. Situations where (a) the distribution of the test statistic changes as a
function of the parameter to be estimated, and (b) simple interval manipulation
does not yield a convenient confidence interval, are generally not discussed. As
an example, consider the sample squared multiple correlation, whose distribu-
tion changes as a function of the population squared multiple correlation. Confi-
dence intervals for the squared multiple correlation are very informative, yet are
not discussed in standard texts, because a single simple formula for the direct
calculation of such an interval cannot be obtained in a manner analogous to the
way we obtain a confidence interval for u.

A general method for confidence interval construction is available that in-
cludes the method discussed earlier as a special case, but also allows confidence
limits and confidence intervals to be constructed when the aforementioned
method cannot be applied. This method combines two general principles, which
we call the confidence interval transformation principle and the inversion confi-
dence interval principle. The former is obvious, but seldom discussed formally.
The latter is referred to by a variety of names in several classic references
(Kendall & Stuart, 1979; Cox & Hinckley, 1974), yet does not seem to have
found its way into the standard textbooks, primarily because its implementation
involves some difficult computations. However, the method is easy to discuss in
principle, and no longer impractical. Interestingly, when the two principles are
combined, a number of very interesting confidence intervals result.
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First we discuss the confidence interval transformation principle.

Proposition 1. Confidence Interval Transformation Principle. Let f(9) be a
monotonic, strictly increasing continuous function of 8. Let /, and /, be endpoints
of a 1 — « confidence interval on quantity 6. Then (/) and f(/,) are endpoints of a
1 — a confidence interval on f( ).

To prove the proposition, recall that a function is monotonic and strictly in-
creasing if, when plotted in the plane, the graph “keeps going up” from left to
right, that is, it never flattens out or goes down. A monotonic, strictly increasing
function is order preserving. Because the plot never flattens out, if x > y, then
f(x) > f(y). This can be seen easily by examining Figure 9.2.

If /, and /, are endpoints of a valid .95 confidence interval on quantity &, then
95% of the time in the long run, & is between /; and /,. If f( ) is a monotonic
strictly increasing function, /, is greater than #, and @ is greater than /,, then it
must also be the case that f(/,) > (), and f(&) > (/). Consequently, if /, and /,
are endpoints of a 1 — & confidence interval for parameter & then f(/,) and f(/,)
are endpoints of a valid 1 — « confidence interval on f( ).

Here are two elementary examples of the confidence interval transformation
principle.

Example 1. A Confidence Interval for the Standard Deviation. Suppose you cal-
culate a confidence interval for the population variance o?. Such a confidence
interval is discussed in many elementary textbooks. You desire a confidence in-
terval for o. Confidence intervals for o are seldom discussed in textbooks.
However, one may be derived easily. Because o takes on only nonnegative val-
ues, it is a monotonic increasing function of ¢ over its domain. Hence, the con-
fidence interval for o is obtained by taking the square root of the endpoints for
the corresponding confidence interval for o2.

Example 2. Inverting the Fisher Transform. Suppose one calculates a confi-
dence interval for z(p), the Fisher transform of p, the population correlation co-
efficient. Taking the inverse Fisher transform of the endpoints of this interval
will give a confidence interval for p. This is, in fact, the method employed to
calculate the standard (approximate) confidence interval for a correlation.

These examples show why the confidence interval transformation principle is
very useful in practice. Frequently a statistical quantity we are very interested in
(like p) is a simple function of a quantity (like z(p)) we are not so interested in,
but for which we can easily obtain a confidence interval.
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FIGURE 9.2  Order-preserving properties of a monotonic, strictly increasing function.

As an example, suppose we take two independent samples of size n, and n,.
We calculate sample means X, and X, and sample variances s? and s2 Under the
standard assumptions of normality and homogeneity of variance, the two-sample
¢ statistic is used to decide whether an experimental and control group differ:

fl - .Yz
tn|+nz—2 = .
1 N 1 (nl - l)sl2 + (nz - 1)s22
n ny nmtn, — 2

The traditional approach is to compute the # statistic and perform a significance
test. A better, but less frequently employed procedure is to report a confidence
interval on the quantity £ = x, — u, using the following standard formula for the
endpoints (where ¢[is the critical value from Student’s ¢ distribution):

(%1 = %0) & ¥ap o2 \/(i+ij((”l ~ st *(n _I)S%J. (9.10)

m n m+n, -2

(9.9)

In practice, an even more useful quantity than E is the standardized effect
size, defined as
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g =H"H ©9.11)
g

E, is a standardized, or “metric-free” measure of effect size. If one two-group
study reports its results in pounds, the other in kilograms, then the unstandard-
ized effect £ will not be in the same scale of measurement in the two studies,
whereas E will be. Consequently, a confidence interval on E; is more informa-
tive than one on E. This is especially true when different studies are compared,
or when information is combined across studies.

In the context of meta-analysis, Hedges and Olkin (1985) discussed a variety
of methods for estimating £, most of which are approximations. The exact
method (which they discuss on page 91 of their book) involves the noncentrality
interval estimation approach. This approach was considered impractical for gen-
eral use at the time their book was written, so the authors provided nomographs
only for some limited cases involving very small samples.

Before continuing, we digress briefly to recall some mathematical back-
ground on the key noncentral distributions for the less advanced reader. The
normal, ¢, ¥?, and F distributions are statistical distributions covered in most in-
troductory texts. These distributions can be related to the normal distribution in
various ways: for example, squaring a random variable that has a standard nor-
mal distribution yields a random variable that has a y? distribution with 1 degree
of freedom. The ¢, y2, and F distributions are special cases of more general dis-
tributions called the noncentral t, noncentral y?, and noncentral F. Each of these
noncentral distributions has an additional parameter, called the noncentrality pa-
rameter. For example, whereas the F distribution has two parameters (the
“numerator” and “denominator” degrees of freedom), the noncentral F has these
two plus a noncentrality parameter. When the noncentral F distribution has a
noncentrality parameter of zero, it is identical to the F distribution, so it includes
the F distribution as a special case. Similar facts hold for the ¢ and y? distribu-
tions. What makes the noncentrality parameter especially important is that it is
related very closely to the truth or falsity of the typical null hypotheses that these
distributions are used to test. So, for example, when the null hypothesis of no
difference between two means is correct, the standard ¢ statistic has a distribution
that has a noncentrality parameter of zero, whereas if the null hypothesis is false,
it has a noncentral ¢ distribution. In general, the more false the null hypothesis,
the larger the noncentrality parameter.

Suppose we take data from two independent samples, and calculate the two
sample -statistic shown in Equation 9.9. The statistic has a distribution which is
noncentral 7, with noncentrality parameter



9. NONCENTRALITY INTERVAL ESTIMATION 237

5=E, /ﬂ (9.12)
nt+n

When the null hypothesis is true, & is zero and is not a particularly interest-
ing quantity. However, E, is a statistical quantity of considerable interest, and
may be obtained from & by a simple monotonic transformation

+
E =6 (9.13)
nmn,

Hence, if we can obtain a confidence interval for &, we also can obtain a
confidence interval for E,, using the confidence interval transformation principle.

We now describe how to obtain a confidence interval for . When we discuss
continuous probability distributions, we often talk in terms of the cumulative
distribution function, or CDF, and we use the notation F'( ) to denote this func-
tion. The CDF evaluated at a point x is defined as the probability of obtaining a
value less than or equal to x, hence the term cumulative. Many normal curve ta-
bles in the back of standard textbooks are CDF tables. For example, in the unit
standard normal distribution, half of the cases fall at or below 0, so F(0) = .50.
Ninety-five percent of the cases fall at or below 1.645, so F(1.645) = .95, and
F(—1.645) = .05. Sometimes, when solving problems involving the normal curve
table, one needs to “reverse” the table. For example, if I asked you what point in
the normal curve has 95% of the cases at or below it, you would scan down the
table until you found .95, move to the number in the column next to .95, and re-
port back “1.645” as your answer. This process of reversing the roles of the two
columns in the table is equivalent to inverting the CDF function. In mathemati-
cal notation, we say that the CDF function has an inverse, and that F~!(.95) =
1.645. In a similar vein, F~'(.5) =0, and F~!(.05) = —1.645.

Obtaining a confidence interval for & is simple in principle, though not in
practice. Consider the graph in Figure 9.3. This graph shows the .05 and .95 cu-
mulative probability points for a noncentral distribution for fixed degrees of
freedom, and varying values of the noncentrality parameter 6. These functions,
labeled “5™ percentile” and “95™ percentile” in the graph, can be denoted more
formally as F1(.05, &) and F-(.95, ), respectively, because they are the inverse
of the CDF of the noncentral ¢, for fixed probability level, evaluated at o.

To develop a confidence interval for &, we need to find functions of the sam-
ple data that bracket o a certain proportion of the time, and Figure 9.3 provides
the key to obtaining such a function. Consider the upper curve in the graph. For
any value of & along the X axis, this curve plots the observed value ¢ below
which the noncentral ¢ will occur 95% of the time. Now, suppose the true value
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FIGURE 9.3  Noncentrality interval estimation with a confidence belt

of J is J,. This means that 95% of the time the observed ¢ value will be less than
the value on the Y-axis marked as ¢,.

Careful consideration of the upper curve reveals that its inverse (which exists,
because the function is monotonic and strictly increasing in &) can be used to
construct a lower confidence limit, or a lower bound on a confidence interval. To
see this, move along the Y-axis and, from any value ¢ draw a horizontal line
straight out until it intersects with the upper curve, then draw a point straight
down until the X-axis is intersected. Call the value obtained this way A(¢), be-
cause it is a function of the 7 value chosen from the Y-axis. This value is the in-
verse of the function of the upper curve, evaluated at . Note that each value of ¢
corresponds to one and only one value of 0.

Imagine that the true noncentrality parameter is J,. Imagine further that, for
each value of 7 that is observed, you compute the inverse of the upper curve
function at ¢ by drawing a line straight over to the upper curve, then straight
down to the X-axis. With such a procedure, 95% of the time you will observe a
value of ¢ that is less than #,, and so 95% of the time you will observe a value of
A(?) that is less than A(¢,). But A(¢)) = 6,. Consequently, A(#) produces a 95%
lower confidence limit for o, because it produces numbers that are below J ex-
actly 95% of the time.

If we call the inverse of the lower curve’s function B(f), a similar procedure
provides an upper 95% confidence limit for ¢. That is, draw a horizontal line
from an observed ¢ value on the Y-axis to the lower (5" percentile) curve, then
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down (perpendicular) to the X-axis. By a similar logic to that discussed previ-
ously, the value obtained by this procedure will be above & 95% of the time, and
will therefore be a 95% upper confidence limit. Taken together, A(¢) and B(¢)
provide a 90% confidence interval for .

This method works, in general, so long as the /2 and 1 — «/2 probability
points are montonic and strictly increasing as a function of the unknown pa-
rameter with the other (known) parameters considered as fixed values. Note that,
in practice, one does not have to generate the entire curve of values, because the
endpoints of the confidence interval are simply those values of the unknown pa-
rameter for which the cumulative probabilities of the observed data are 1 — a/2
and «/2. So if you have a computer routine that can solve for these two values
directly, there is no need to plot this curve. (In practice, numerical analysis root-
finding techniques like the method of bisection are substantially faster than the
graphical approach shown here for demonstration purposes. Computer software
can calculate the intervals in approximately one second for most practical exam-
ples.)

The following proposition expresses succinctly the result of our graphical in-
vestigation.

Proposition 2. Inversion Confidence Interval Principle. Let v be the observed
value of X, a random variable having a continuous (cumulative) probability
distribution expressible in the form F(v, ) = Pr (X < v|d) for some numerical
parameter 6. Let F(v, 8) be monotonic, and strictly decreasing in 8, for fixed
values of v. Let /; and /, be chosen so that Pr(X<v |8 =1/)=1-a/2 and
Pr(X <v |0 =1,)= /2. Then [, is a lower 1 — &/2 confidence limit for &, /, is an
upper 1 — /2 confidence limit for , and the interval with /; and /, as endpoints is
a 1 — a confidence interval for 6.

We call the method we have just described noncentrality interval estimation,
because in practice one frequently estimates the noncentrality parameter en route
to a more interesting statistical quantity. The following numerical example
shows how the method is used to estimate standardized effect size in a two-
group experiment.

Example 3. Estimating the Standardized Effect in Two-Group Experiments. In
this example, we apply the noncentrality interval estimation approach to two hy-
pothetical two-group experiments, each involving two independent samples of
equal size. Experiment 2 was based on an extremely large sample size of 300 per
group, whereas Experiment 1 had only 10 per group. The two-tailed p levels for
the experiments were approximately the same, with Experiment 1 having the
higher p level (.0181). Experiment 2 had a p level of .0167, and thus was “more
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FIGURE 9.4 Noncentrality and the cumulative probability of an observed ¢ statistic

significant.” Summary statistics for the experiments, along with confidence in-
tervals for the standardized effect size, are shown in Table 9.2.

We now proceed to demonstrate how the confidence interval for £, may be
calculated. First, we calculate a .95 confidence interval for §. The ¢ statistic in
Group 1 has an observed value of 2.60 with 18 degrees of freedom. The end-
points of the confidence interval for ¢ are those values of J that generate the
unique noncentral #;5 ; distributions in which the observed value of 2.60 has cu-
mulative probability .975 and .025. If a good noncentral ¢ distribution calculation
program is available, and its output can be plotted, these values may be approxi-
mated fairly closely by graphical analysis. Figure 9.4 shows a plot of the cumu-
lative probability of the value 2.60 as a function of ¢ for the family of noncentral
t distributions with 18 degrees of freedom.

TABLE 9.2
Comparison of confidence intervals for £, in two experiments.
Experiment 1 Experiment 2
n per group 10 300
Observed ¢ statistic 2.60 2.40
p level (2-tailed) .0181 .0167

95% Confidence Interval for Eg (.1950, 2.1034) (.0355, .3563)
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FIGURE 9.5 Calculating the lower confidence limit for the noncentrality parameter

Zooming in on a narrower region of Figure 9.4, we obtain the view shown in
Figure 9.5, in which we can pinpoint, with a high degree of accuracy, the value
of ¢ for which the cumulative probability is .975 at approximately .4360. This is
the lower endpoint of the .95 confidence interval for 6. In a similar manner, we
can determine the value for the upper endpoint as 4.7033.

We recall from Equation 9.13 that, using the confidence interval transforma-
tion principle, these endpoints may be transformed into a confidence interval for
the standardized effect size E, by multiplying them by

0.44721= |10 +10
Viox10

Consequently, the .95 confidence interval for E; has endpoints .1950 and
2.1034. In a similar manner, we can determine the confidence interval for Ex-
periment 2 to be .0355 and .3563.

The confidence intervals for E; demonstrate clearly that the experiments have
rather different implications. In Experiment 2, a 95% confidence interval for £
ranges from only .0355 to .3563 standard deviation units. In other words, the ex-
periment determined, with a high degree of precision, that the effect is at best
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moderate, and quite possibly less than a tenth of a standard deviation. On the
other hand, the confidence interval in Experiment 1 demonstrates that the ex-
perimental effect has not been determined with precision. The confidence inter-
val for E, includes such disparate values as .195 (small effect) and 2.10 (very
powerful effect). Clearly, the confidence intervals for £, convey much more use-
ful information than the p levels.

APPLICATIONS OF NONCENTRALITY INTERVAL ESTIMATION

The noncentrality interval estimation approach we illustrated in the preceding
section can be applied in a number of common data-analytic situations. Here we
examine several, showing how noncentrality interval estimation adds substantial
new information to the analysis.

Standardized Effect Size for Planned Orthogonal
Contrasts.

As a result of our preceding analysis of Experiments 1 and 2, we might wish to
estimate the difference in standardized effect sizes with a confidence interval.
We can do this by using a planned orthogonal contrast. Planned orthogonal con-
trasts are an extension of the two-sample ¢ statistic that can be performed rou-
tinely on K independent samples to test hypotheses of the form

K
W:ch“k =0. (914)

The ¢, are referred to as “linear weights,” or “contrast weights,” and deter-
mine the hypothesis being tested. For example, if K =2, and the contrast
weights are +1 and -1, then ¥ = x4, — u, and the hypothesis being tested is
that the two means are equal. Under the standard assumptions of normality and
homogeneity of variance, such hypotheses may be tested with a ¢ statistic of the
form

chy-k
. 9.15)

K 2
S\ ps
Z n error

A
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The ¢ statistic has a noncentral ¢ distribution with degrees of freedom equal to
those for mean square error, and a noncentrality parameter given by

K

CeMi
Yy 2
s=— Y - Vo _£ Ig_ (9.16)

K 2 K 2 K 2

c c c

o i i i
=t Mk =t "k =

Confidence intervals for W may be constructed with endpoints

A K CZ
W+ Z—k MS,or - 9.17)
=t N

However, a confidence interval for the standardized contrast

K
W, =Z—Ck“k, (9.18)
aa

is generally more informative, because it expresses how false the null hypothesis
is in standardized units of measurement. Because

K 2
w=L_5 Zc_k, 9.19)
g F

=t "k

it is a trivial matter to convert a confidence interval for ¢ into one for W, the
standardized contrast.

Example 4. Contrasting the Mean Differences for Two Experiments. Suppose, for
the sake of simplicity, that MS,,, . is equal to 100 in both experiments in Table

9.2. If we compare the mean differences for the two experiments, the contrast
weights are

01:1,C2:_1, C3:_1, 04:1.

The mean differences are 11.628 in Experiment 1 and 1.959 in Experiment 2.
The ¢ statistic comparing the two mean differences is 2.127. The noncentrality
interval estimation technique may be applied to the data in Table 9.2 to obtain a
.95 confidence interval estimate on the difference in standardized effects be-
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tween Experiments 1 and 2. We find that this confidence interval has endpoints
of .0739 and 1.859. Since the confidence interval does not include zero, the first
(“less significant”) experiment has a significantly higher standardized effect than
the second (“more significant”) experiment, although the size of the effect dif-
ference has not been established with much precision.

This confidence interval provides much more useful, and much more accurate
information about the relative effects in the two experiments than a comparison
of the p levels.

Exact Confidence Intervals for Root Mean Square
Standardized Effect Size in the One-Way Fixed Effects
Analysis of Variance.

The ideas we developed for a single contrast on means in the context of the z-
statistic generalize readily to the case of several contrasts in the analysis of vari-
ance. In orthogonal analysis of variance designs with equal cell sizes, the F sta-
tistic has a noncentral F distribution that, in general, is a simple function of the
root mean square standardized effect. Here we examine the simplest special
case, the one-way fixed-effects analysis of variance with n observations per
group. Consider the F statistic in a one-way, fixed-effects ANOVA with n obser-
vations per group, and K groups. Let ¢, be the treatment effect associated with
group k, and o be the error variance. The F' statistic with K —1 and
K (n — 1) degrees of freedom has noncentrality parameter

5=n i (%’fj . (9.20)

The quantity J/n is thus the sum of squared standardized effects. Now, sup-
pose we wish to “average” these standardized effects in order to obtain an over-
all measure of strength of effects in the design. One possibility is simply the
arithmetic average of the K standardized effects, that is, 6/(nK). One problem
with this measure is that it is the average squared effect, and so is not in the
proper unit of measurement. A second problem is that because of the way effects
are defined in the analysis of variance, there are only K — 1 mathematically inde-
pendent effects, because there is one constraint imposed upon the effects for
identifiability, that is, that the effects sum to zero. Because the definition of
“effect” in the analysis of variance depends on a mathematical restriction that is
arbitrary, there are in fact infinitely many ways we could choose to define an
ANOVA effect. Often, the “effects” defined by the standard ANOVA restriction
need not coincide with experimental effects the way we commonly think of
them. Consider the very simple special case of a two-group experiment involv-
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ing a treatment group and a placebo control. Suppose the population standard
deviation is 1, and the control group has a population mean of 0, the experimen-
tal group has a population mean of 2. In this case, there is one standardized ex-
perimental effect, and it is 2 standard deviations in size. On the other hand, the
analysis of variance defines two effects, and they are «, =-1 and «, =+1, re-
spectively. So, if we average the sum of squared ANOVA effects, we come up
with an average squared effect of 1. Clearly, this is misleading, an artifact of the
way ANOVA effects are defined.

There is, in our opinion, no simple, universally acceptable solution to this
problem. However, averaging with K appears to underestimate effect levels con-
sistently. Consequently, we propose to average by the number of independent ef-
fects, that is, K — 1. With this stipulation, 6/[(K —1)n] is the average squared
standardized effect, and the root mean square standardized effect is

RMSSE = |————. (9.21)

(K=1)n

With this definition, we find that, in the above numerical example, the RMSSE
is 1.41.

In order to obtain a confidence interval for RMSSE, we proceed as follows.
First, we obtain a confidence interval estimate for ¢ by iteration, using the non-
centrality interval estimation approach. Next, we directly transform the end-
points by dividing by (K — 1)n. Finally, we take the square root. The result is an
exact confidence interval for the root mean square standardized effect in the
analysis of variance.

Example 5. Confidence Intervals on the RMSSE. Suppose a one-way fixed-ef-
fects ANOVA is performed on 4 groups, each with an n of 20. An overall F sta-
tistic of 5.00 is obtained, with a p level of .0032. The F test is thus “highly sig-
nificant” and the null hypothesis is rejected at the .01 level. In this case, the non-
centrality interval estimate provides a somewhat less awe-inspiring account of
what has been found. Specifically, the 95% confidence interval for o ranges
from 1.866 to 32.5631, and the corresponding confidence interval for the root
mean square standardized effect ranges from .1764 to .7367. Effects are almost
certainly “there,” but they are on the order of half a standard deviation.

Example 6. Confidence Intervals on Hays’ 17>. Fleishman (1980) described the
calculation of confidence intervals on the noncentrality parameter of the non-
central F distribution to obtain, in a manner equivalent to that employed in the
previous two examples, confidence intervals on Hays’ 772, which is defined as
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_ 0}
o?

n? , (9.22)

where o2 is the variance due to effects, and o? is the total variance. Fleishman

also discussed the “signal to noise ratio”

g’
o2’

f2= (9.23)

Fleishman (1980) defined the “effect variance” o2 in the fixed-effects case as

= Z i (9.24)

fr="_. (9.25)

Fleishman (1980) cites an example given by Venables (1975) of a 5-group
ANOVA with n = 11 per cell, and an observed F of 11.221. In this case, the .90
confidence interval for the noncentrality parameter & has endpoints 19.380 and
71.549, whereas the confidence interval for /? ranges from .352 to 1.301.

Exact Confidence Intervals for RMSSE in Fixed-Effect
Factorial ANOVA

The method of the preceding section may be generalized to completely random-
ized factorial designs in the analysis of variance. However, some modification is
necessary, because the noncentrality parameter for factorial fixed-effects designs
is a function of the number of cells in which an effect operates. Consider, for ex-
ample, the two-way fixed-effects ANOVA, with J rows, K columns, and n ob-
servations per cell. Consider the F statistic for row effects. This statistic is es-
sentially the one-way analysis of variance computed on the row means collapsed
across columns. Consequently, the statistic has a noncentral F distribution with
noncentrality parameter

_ & (a))
3, _nK,Z(UeJ . (9.26)
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Each row effect operates on K columns, and naturally the noncentrality pa-
rameter of the F distribution reflects that fact. Similarly, the F statistic for col-
umn effects is essentially a one-way analysis of variance performed on the col-
umn means collapsed across rows, and the noncentrality parameter for the over-
all F statistic for column effects is

Sy = nJZ (%) . 9.27)

In general, the RMSSE for a particular effect is of the form

RMSSE .., = /L , (9.28)
Nefjoct A effect

where 6,4, is the noncentrality parameter for the F statistic for the effect, and
Mg 18 the total number of observations in the collected cell means used to com-
pute the effect. For example, in a two-way ANOVA, the row effects are esti-
mated by summing across the K columns to reduce the ANOVA, in effect, to a
one-way ANOVA on cell means based on nK observations per “cell.” For the
AB interaction, however, n,,, is n, because interactions are computed on indi-
vidual cells, not on rows or columns that are summed across. In a three-way
ANOVA, with J rows, K columns, and H levels of the third factor, n,y,, for the
row effect is nKH.

Example 7. RMSSE in a Two-way ANOVA. Suppose a two-way 2 X 7 ANOVA is
performed with n = 4 observations per cell, and the source table is as in Table
9.3. In this source table, all 3 effects are significant. There is a significant main
effect for factors A and B, and a significant AB interaction. Notice that the p
level for the A main effect (.0186) is about half that for the interaction (.0369).

One might be tempted to declare the A main effect to be “more significant”
than the interaction. However, the 90% RMSSE confidence intervals for the
main effects and interaction would seem to dispute that. The low ends for the
confidence intervals are virtually identical. The upper end of the confidence in-
terval for the AB interaction effect is substantially higher for the AB interaction
than for either main effect.

This suggests that there is less power (and precision of estimate) for detecting
interaction effects than for detecting main effects in this design. It is wise to re-
member this when making decisions about the “additivity” of models in the
analysis of variance. The table also dramatizes that, because of the different
power curves, different numbers of cells, and different constraints on effects, it is
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TABLE 9.3
A Two-Way (2 X 7) Fixed Effects ANOVA

Source SS df MS F  plevel RMSSE RMSSE

Lower Upper
A 14.40 1 1440 6.00 .0186 136 782
B 38.16 6 6.36 2.65 .0285 135 154
AB 36.00 6 6.00 2.50 .0369 139 1.038
Error 100.80 42 2.40

very risky to characterize one result as “more significant” than another on the
basis of p levels in ANOVA.

Exact Confidence Intervals for the Squared Multiple
Correlation

One very common statistical application that practically cries out for a confi-
dence interval is multiple regression analysis. Publishing an observed R? together
with the result of a hypothesis test that the population squared multiple correla-
tion, P?, is zero, conveys little of the available statistical information. A confi-
dence interval on P? is much more informative. Exact confidence intervals on
P? can be computed using the inversion interval estimation approach. Yet gen-
eral purpose statistical packages do not calculate such a confidence interval, and
numerous well-known textbooks on multivariate analysis at both the theoretical
and applied levels (e.g., Anderson, 1984; Morrison, 1990) do not allude to the
possibility of calculating such an interval. The result is that numerous multiple
regression studies have published R? values (along with various “shrunken” es-
timators) with no indication of experimental precision.

Kramer (1963) and Lee (1972) described methods for calculating the cumu-
lative distribution of the squared multiple correlation coefficient. Both authors
included tables in their articles. For a given observed R?, fixed sample size, and
number of predictors, the distribution of R? can be expressed as a function of P2.
(See, for example, Lee (1972), p. 178.) Consequently, the inversion confidence
interval principle can be employed. However, the tables of Kramer and Lee pro-
vide only the upper percentage points of the distribution. Consequently, only the
lower confidence limit, or “statistical lower bound” can be determined, and this
must be accomplished by tedious linear interpolation.

Steiger and Fouladi (1992) provided a computer program, R2, for calculating
exact confidence intervals on P?. The program iterates an exact confidence in-
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terval and confidence limit, using the noncentrality interval estimation approach.
Such intervals can be quite revealing.

Example 8. Confidence Intervals for the Squared Multiple Correlation. Suppose a
criterion is predicted from 45 independent observations on 5 variables and the
observed squared multiple correlation is .40. In this case a 95% confidence in-
terval for P? ranges from .095 to .562! A 95% lower confidence limit is at .129.
On the other hand the R? value is significant “beyond the .001 level,” because
the p level is .0009, and the shrunken estimator is .327. Clearly, it is far more
impressive to state that “the R? value is significant at the .001 level” than it is to
state that “we are 95% confident that P? is between .095 and .562.” But we be-
lieve the latter statement conveys the quality and meaning of the statistical result
more accurately than the former.

Some writers, like Lee (1972), prefer a lower confidence limit, or “statistical
lower bound” on the squared multiple correlation to a confidence interval. The
rationale, apparently, is that one is primarily interested in assuring that the per-
centage of variance “accounted for” in the regression equation exceeds some
value. Although we understand the motivation behind this view, we hesitate to
accept it. The confidence interval, in fact, contains a lower bound, but also in-
cludes an upper bound, and, in the interval width, a measure of precision of es-
timation. It seems to us that adoption of a lower confidence limit can lead to a
false sense of security, and reduces that amount of information available in the
model assessment process.

We believe that confidence intervals always should be reported with a multi-
ple correlation. However, we add a note of caution. Strictly speaking, such con-
fidence intervals (as well as the significance test) will not be accurate unless
distributional assumptions have been met, and the independent variables in the
regression equation specified a priori. In many cases, the final regression equa-
tion has been determined by some kind of exploratory stepwise approach, and no
attempt has been made at cross-validation. It is important to reemphasize that
estimates of P? and confidence intervals are biased by this specification search.
For the interval estimation approach discussed here to be valid, a cross-valida-
tion sample should be used.

Asymptotic Confidence Intervals for Goodness of Fit in
the Analysis of Covariance Structures

A key area where noncentrality interval estimation has been applied with excel-
lent results is in the analysis of covariance structures, sometimes referred to as
“causal modeling.” In this area, the statistical inference is usually of the accept-
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support (AS) variety. In this kind of situation, standard significance testing logic
is badly strained.

Until approximately 1980, models were evaluated in the analysis of covari-
ance structures by using the chi-square test of fit. The problem with the proce-
dure is that it tests a hypothesis of perfect fit. Since this hypothesis is often false,
the statistical decision rendered by the chi-square statistic often boiled down to a
question of sample size. With small samples, poorly fitting models might be
“accepted,” while with large samples a model with excellent fit (in the practical
sense) might be overwhelmingly rejected. The results were often embarrassing.
Sometimes models which appeared to fit very well were rejected “beyond the .01
level.” Awkward mental contortions were required to simultaneously praise the
maximum likelihood chi-square statistic as a technical breakthrough, while ig-
noring its result.

Steiger and Lind (1980) demonstrated that performance of statistical tests in
common factor analysis could be predicted from a noncentral chi-square ap-
proximation. The noncentrality parameter was n times the “population discrep-
ancy function,” which is the (maximum likelihood or generalized least squares)
discrepancy function calculated on the population covariance matrix. Conse-
quently, the population discrepancy function was an excellent candidate for a de-
scriptive index of how badly a model fit in a particular population. Steiger and
Lind suggested abandoning the tradition of hypothesis testing in favor of con-
structing a confidence interval on the population discrepancy function (or some
particularly useful function of it). This approach offers two worthwhile pieces of
information at the same time. It allows one, for a particular model and data set,
to express (a) how bad fit is in the population, and (b) how precisely the popula-
tion badness of fit has been determined from the sample data.

Steiger (1989, 1990b) implemented three noncentrality-based indices of fit in
the computer program EzPATH, including the index originally proposed by Stei-
ger and Lind (1980). All these indices can be computed with confidence inter-
vals. One index, the RMSEA, divides the population fit function F* by the de-
grees of freedom, then takes a square root to obtain a “Root Mean Square Error
of Approximation,” in a manner roughly analogous to the RMSSE we recom-
mended for the fixed effects factorial ANOVA earlier in this article. Most cur-
rent structural modeling programs (e.g., LISREL, EQS, SEPATH, CALIS,
RAMONA) calculate the RMSEA, which Browne and Cudeck (1992) also rec-
ommend.

The other two noncentrality-based indices developed by Steiger were popula-
tion analogs of the GFI and AGFT of Joreskog and Sorbom (1984). Joreskog and
Sorbom recommended the finite sample equivalents of these as sample-based
indices, but offered no population rationale for them. Steiger (1989) and Maiti
and Mukherjee (1990) demonstrated that the sample-based GFI and AGFI could
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be viewed as biased estimators of Steiger’s (1989) equivalent population quanti-
ties, and that both of these indices, under fairly general conditions, could be
written as a simple monotonic function of the population noncentrality parame-
ter. For example, for structural models (based on p observed variables) that are
invariant under a constant scaling factor, Steiger’s 'y, the population equivalent
of the GFI (i.e., the GFI calculated on the population covariance matrix) can be
written

p
MN=——--: 9.29
R T 9:29)

This simple monotonic relationship implies that, via the confidence interval
transformation principle, a confidence interval on the noncentrality parameter of
a noncentral chi-square distribution can be converted easily into a confidence
interval on ;.

In the documentation for the structural equation modeling program SEPATH,
Steiger (1995) extended the noncentrality-based indices to multiple samples, and
gave a simplified formula for estimating the bias in the Joreskog and Sérbom
(1984) indices.

There are several advantages to the noncentrality-based approach. First, when
the RMSEA and adjusted gamma are employed, the index is automatically cor-
rected for model parsimony. For example, as models become more complex, fit
tends to improve, all other things being equal, whereas degrees of freedom de-
crease. The RMSEA, calculated in the population (for single-sample models)
with the equation

F*
R = |—, 9.30
7 (9.30)

compensates for this by dividing by the degrees of freedom. Second, high sam-
ple size now works “for the experimenter” instead of against the experimenter,
because larger sample sizes result in smaller confidence interval widths, reflect-
ing greater precision of estimation. Third, the distinction between a “statistically
significant” badness of fit and a “meaningful” badness of fit can now be made.
The following example clarifies these advantages.

Example 9. Evaluating the fit of a circumplex model. A perfect, equally spaced
circumplex correlation matrix (Guttman, 1954) has equal correlations on sub-di-
agonal strips. For example, a 6 X6 correlation matrix would be of the form
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TABLE 9.4
Correlation Pattern for a 6 X 6 Circumplex
1
p 1
p. p 1
ps P P 1

P P P P 1
P P P3P Py 1

shown in Table 9.4. Guttman (1954) observed a correlation matrix that has been
reprinted in a number of places, including Joreskog (1978).

Suppose we were to test the null hypothesis that the Guttman (1954) correla-
tion matrix is a perfect, equally spaced circumplex, using structural equation
modeling software. The sample size (n = 710) is very large in this example.
Hence, we would expect the precision of estimation to be very high. At the same
time, we would have to keep in mind that the “accept-support” approach of the
chi-square test commonly used in structural modeling would be of very limited
usefulness in this situation. We recognize that a model with as many constraints
as this one will almost certainly not fit perfectly in the population, and we have
very high power to detect an imperfect fit.

The chi-square statistic yields, in this case, a value of 27.05 with 12 degrees
of freedom. The probability level is .008, indicating that the null hypothesis of
perfect fit must be rejected. However, a reasonable conclusion from confidence
interval analysis is that, although it is highly probable that the data do not fit a
circumplex perfectly, they do fit a circumplex well. The 90% confidence interval
for the Steiger-Lind (1980) RMSEA index is between .021 and .064.

The corresponding confidence interval for the adjusted population gamma
coefficient, the population equivalent of the Joreskog-Sorbom (1984) AGFI, is
between .972 and .997.

Both confidence intervals show excellent fit of the model was determined
with high precision. A reasonable conclusion would seem to be that Guttman’s
data fit the model in Table 9.4 very well.

Statistical Bounds on Power.

Occasionally, in the aftermath of a failure to reject a statistical significance test,
reviewers or authors speculate about the role of inadequate power in causing the
failure to reject. Ironically, statistical inference about power itself is frequently
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absent from such discussions. Often it need not be. In many situations power is,
all other factors held constant, a monotonic, strictly increasing function of a
noncentrality parameter. Consequently, we can use the confidence interval trans-
formation principle to construct post hoc statistical upper bounds on power, after
a significance test has been performed.

Taylor and Muller (1995) have discussed such an approach in the general
context of the multivariate linear model. The procedure is, in principle, quite
straightforward. For example, consider the F' test in the 1-way fixed-effects
ANOVA. Suppose we obtain a 90% confidence interval on the noncentrality pa-
rameter. Since power and the noncentrality parameter are monotonically func-
tionally related for a given sample size and &, we may use the confidence inter-
val transformation principle to obtain a confidence interval, after seeing the
data, for power.

To avoid misunderstanding, we emphasize that (a) we do not favor the sig-
nificance testing approach for exploratory social science research, and that (b) in
situations where significance tests are to be performed, it is better to analyze
power before gathering one’s data. However, situations arise where data have
been gathered, a significance test has been performed, and then someone raises a
question about power.

In such situations, a confidence interval on power provides, in its upper and
lower limits, a “best case” and “worst case” scenario, respectively, for power in
the test just performed. The upper bound of the confidence interval for power,
can be considered a 95% statistical upper bound on power. This is a number
below which the true power occurs 95% of the time over repeated samples. If the
95% statistical upper bound on power is below a reasonable target value, say .90,
it means that the most optimistic reading of the available evidence suggests that
power was inadequate to detect the effects present in your data with a signifi-
cance test. The lower end of a 90% confidence interval is a 95% statistical lower
bound on power. If this end of the confidence interval exceeds some reasonable
value, it can confirm that power was almost certainly adequate in the experiment
just performed. Post-hoc statistical bounds on power combine information about
the precision of estimate in a study with information about the actual effects in
the study. As such, it relies more on available information and less on specula-
tion than posterior power analyses based on hypothetical effect sizes.

Example 10. A Confidence Bound on Power in a One-Way ANOVA. Suppose a |-
way ANOVA is performed on two independent groups, with sample sizes of 15
in each group, and an F value of 2.0 is obtained. In this case, the two-tailed p
level is .1683, and the null hypothesis is, of course, not rejected. The 90% confi-
dence interval on the noncentrality parameter ranges from 0 to 9.459. When the
noncentrality parameter is zero, “power,” strictly speaking, does not exist (i.e.,
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the null hypothesis is true), but the rejection probability is alpha (i.e., .05). So, in
a sense, the lower bound of the confidence interval for power is .05. The upper
bound of the confidence interval on power is the power corresponding to a non-
centrality parameter of 9.459. This value (which may be calculated as .843) is a
95% upper confidence limit on power. The 90% confidence interval on the
RMSSE ranges from 0 to .794. This suggests that (a) effect size cannot be de-
termined with high precision in this design, and (b) even if the effect size is as-
sumed to be the maximum statistically reasonable value, power is .843. This
suggests the sample size in this study is too low to afford the precision of esti-
mation deemed desirable in many areas of social science.

CONCLUSIONS AND NOTES ON APPLICATIONS

In this chapter, we have discussed confidence interval methods that offer a supe-
rior alternative to significance testing in situations where confidence intervals
are seldom applied, or applied in a suboptimal manner. These confidence inter-
vals provide all the information inherent in a significance test. They are no
longer computationally impractical, and should augment or replace the corre-
sponding significance test procedures. We have, in the body of the chapter, given
examples of how the procedures may be used in many common statistical testing
situations.

Many users will find that these techniques serve as a superior replacement for
significance testing in common situations. Others will consider this view too
radical, and will use them to augment the more traditional approaches.

Several times in this article, we emphasized the value of using the width of
the confidence interval as in index of precision of estimate of a parameter. It
should be remembered that the width of a confidence interval is generally a ran-
dom variable, subject to sampling fluctuations of its own, and may be too unreli-
able at small sample sizes to be useful for some purposes.

In this regard, there are two additional issues that arise in implementing the
inversion approach to interval estimation. The first issue arises in some common
situations when the parameter space (i.e., the set of all possible parameter val-
ues) is bounded. For example, suppose one is constructing a confidence interval
for the squared multiple correlation, or for the RMSEA index of fit in structural
modeling. Neither of these parameters takes on negative values, so the parameter
space is bounded on the left at zero. The inversion approach to interval estima-
tion requires one to find a values of a parameter 8 that imply sampling distribu-
tions in which the observed statistic is at the @ /2 and 1—a /2 quantiles. These
values are the endpoints of the confidence interval. In some cases, however, the
value of the observed statistic is so low that it is not possible to find a non-
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negative value of 8 that places it at the required percentage point. Standard pro-
cedure in this case is to arbitrarily set the confidence limit at zero, since the
parameter cannot be less than zero. This maintains the correct coverage proba-
bility for the confidence interval, but the width of the confidence interval may be
suspect as an index of precision of measurement when either or both ends of the
confidence interval are at zero. In such cases, one might consider obtaining al-
ternative indications of precision of measurement, such as an estimate of the
standard error of the statistic. Often such estimates are readily available. A more
proactive solution is to assure, in advance, that sample size is adequate to pro-
vide reasonable precision of estimation across a typical range of parameter val-
ues. For example, MacCallum, Browne, and Sugawara (1996) provide guidelines
for appropriate sample size when using the RMSEA as an index of fit in struc-
tural equation modeling. Steiger and Fouladi (1992) provide a computer pro-
gram, R2, for calculating appropriate sample size in multiple regression. These
guidelines (developed in the context of power calculation within a hypothesis
testing approach) should be given careful attention during the design of struc-
tural modeling and multiple regression studies. If they are followed, confidence
intervals should seldom intrude on the boundaries of the parameter space.

There is a second issue that is probably of less concern in practice. When the
true parameter is on the boundary of the parameter space, the coverage probabil-
ity for the confidence interval may be higher than the nominal value. For exam-
ple, suppose the population squared multiple correlation is zero. In such a
situation, it is not possible to obtain a confidence interval that “misses” the true
parameter on the low side, and so the confidence interval is conservative, i.e.,
the actual coverage probability is 1 —a /2, rather than 1—-a.

The fine details of programming computations were not discussed in this
paper, but their importance should not be underestimated. Implementing the
techniques is much more difficult than understanding them. Much of the devel-
opment behind these methods is highly technical. In general, noncentral distri-
bution routines present many more programming challenges than their central
variants, and iterative routines used in the inversion approach must be pro-
grammed very cautiously to assure reliable performance.

Some of the methods discussed in this chapter already have been imple-
mented in software whose availability is described on the website
http://www.interchg.ubc.ca/steiger/homepage.htm. The program R2, available
for computers running either the MSDOS or Windows operating system, com-
putes confidence intervals, power, sample size required to achieve a given
power, and other statistics on the squared multiple correlation. This program is
available now. Other software will be announced as it becomes available. In-
terested readers may contact the senior author via email, at
steiger@unixg.ubc.ca.
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