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A Caution About Reference
Variables, Identification Constraints, and Scale Dependencies in
Structural Equation Modeling

James H. Steiger
University of British Columbia

In traditional approaches to structural equations modeling, variances of latent en-
dogenous variables cannot be specified or constrained directly and, consequently,
are not identified, unless certain precautions are taken. The usual method for
achieving identification has been to fix one factor loading for each endogenous
latent variable at unity. An alternative approach is to fix variances using newer
constrained estimation algorithms. This article examines the philosophy behind
such constraints and shows how their appropriate use is neither as straightforward
nor as noncontroversial as portrayed in textbooks and computer manuals. The
constraints on latent variable variances can interact with other model constraints to
interfere with the testing of certain kinds of hypotheses and can yield incorrect
standardized solutions with some popular software.

Structural equation modeling programs are capable
of analyzing a wide range of different models and
techniques. In describing how to analyze such models,
many textbooks advise the reader that to establish
identification of a structural model, there must be one
factor loading fixed at unity for each endogenous la-
tent variable in the model. The observed variable with
this unit loading identification (ULI) constraint is of-
ten referred to as a reference variable. The clear im-
plication of the advice is that ULI constraints can, and
should, be used almost automatically.

In this article, I demonstrate that this apparent rule
regarding ULI constraints has exceptions and that ap-
plying the rule without understanding the exceptions
can lead to errors in practice. I start with the basics—
analyzing why ULI constraints are used, demonstrat-
ing some statistical consequences of their use, and
developing some simple rules for determining when
ULI constraints are not being used in the standard
manner. Then I demonstrate, with some striking ex-
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amples, how the traditional use of ULI constraints
may lead to questionable or incorrect statistical con-
clusions when model coefficients are tested for equal-
ity using a chi-square difference test. Finally, I discuss
potential solutions for the problems.

Notation

Different structural equation modeling programs
use different models and notation systems. In this ar-
ticle, I use a slightly augmented version of the stan-
dard LISREL model and notation as described by
Joreskog and Sorbom (1989). Figure 1 represents a
typical structural equation model with LISREL nota-
tion. Because the LISREL model contains so many
model matrices, the standard notation uses repeated
names. For example, there are two ® matrices, @5 and
®.. To avoid the use of superscripts or triple sub-
scripts, I refer, where the full LISREL model is dis-
cussed, to the elements of @ as ,; and the elements
of A, as v,;, rather than using a more cumbersome
notation like ij and A};. In some examples, I detach
the measurement model for the Y variables from a
larger path diagram and examine it in isolation. When
the variances and covariances of the endogenous la-
tent variables in vy are discussed, I follow the example
of Joreskog and Sorbom (1989, p. 147) and use the
notation () for the covariance matrix and w,; for its
elements. For all other elements of matrices I use a
double-subscripted lowercase Greek letter corre-
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Figure 1. A typical structural equation model, with one exogenous latent variable and two
endogenous latent variables, each with two indicators. Latent variables are shown in ovals,
and observed variables are shown in rectangles. Standard LISREL notation is used. Paths
without explicit coefficients have fixed values of 1. “=1" means that a parameter has been
assigned a fixed value of 1 to establish identification.

sponding to the matrix name. Thus, for example, free
parameter elements of the standard LISREL matrix &
are ¢, ;, and free parameter elements in A, are \;;.
Latent variables are shown in ovals, and manifest
variables are shown in rectangles. Directed paths are
shown with single-headed arrows. Undirected paths,
representing covariances or variances, are shown with
lines having two arrowheads.

Structural equation models usually are composed
from several identifiable submodels. For example, in

the model in Figure 1, there are two factor analysis
measurement models at the top and bottom of the
diagram, sandwiched around a multiple regression
structural model in the center. An exogenous variable
in a path diagram has no unidirectional arrow pointing
to it. An endogenous variable has at least one unidi-
rectional arrow pointing to it. At the bottom of Figure
1, there is a measurement model for the exogenous
latent variable &;. £; is a common factor of the two
manifest variables X, and X,. At the top of Figure 1 is
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a measurement model for the endogenous latent vari-
ables m; and m,. In the center of the diagram is a
structural equation model relating &;, m;, and m,.

There are situations in which more than one set of
coefficients will reproduce the observed data equally
well. The coefficients in a structural equation model
are identified if and only if there is only one set of
coefficients that reproduces the data optimally. In the
case of the present model, some coefficients are con-
strained to be equal to 1.0, that is, have ULI con-
straints, in order to make the other coefficients in the
model identifiable. These coefficients (e.g., A; ;) with
ULI constraints are indicated in the diagram with the
notation “=1” following the coefficient.

Characteristics of Properly Defined
ULI Constraints

This section reviews the characteristics of properly
applied ULI constraints in more detail than is found in
most textbooks. Suppose we isolate the upper mea-
surement model, involving 7, M,, ¥, through Y,, and
€, through €,, from Figure 1. In analyzing such a
diagram, we use a “pipeline” metaphor. Imagine
standing at any point in the diagram, and monitoring
the numbers being “piped” through the paths. Dou-
bling the standard deviation (or quadrupling the vari-
ance) of a variable simply doubles the magnitude of
every number coming out of it. Path coefficients in
such diagrams act like multipliers, so any number is
multiplied by a path coefficient it passes through. Be-
cause every number passing through a path is multi-
plied by its path coefficient, the standard deviation of
the number is multiplied by the absolute value of the
coefficient, and the variance by the square of the co-
efficient. With these simple notions in tow, we note
first that latent variable v, is never observed, and so
its variability may only be inferred from two sources:
(a) the variances and covariances of the variables with
paths leading to m; and (b) the values of the path
coefficients leading to m,.

The variances of 1, and m, are not uniquely defined
and are free to vary unless some constraints are im-
posed on the free parameters in Figure 1. To see why,
suppose that the ULI constraints were removed from
Ay and A, and that, by some combination of cir-
cumstances, the paths leading to v, and m, had values
that caused ; to have a variance of 1. Suppose further
that under these circumstances, the values .6, .3, .6,
and .3 for parameters N, |, N, |, A3, and A4, lead to
an optimal fit of the model to the data. Next, imagine
we wished the variance of n, to be some value other

than 1, say, 4. Quadrupling a variable’s variance can
be accomplished by doubling its standard deviation,
or doubling every value of the variable. To achieve
this, while maintaining the identical numbers arriving
at Y, ¥, and m, from m;, we need only double all
values on paths leading to m; while halving all values
(A1, Ay y, and B, ) on paths leading away from ).
Every number emerging from m, is doubled but is
“passed through” coefficients that are now exactly
half what they were. Thus, the numbers emerging at
Y}, Y, and ), are the same as they were. Because s,
and vy, | are free parameters that are attached to uni-
directional paths, we can alter them (to halve the val-
ues of all numbers arriving at v,) without affecting
anything in the lower portion of the diagram in Figure 1.

The situation is demonstrated numerically in the
two path diagram segments in Figure 2. The models in
the upper and lower diagrams have identical fit to the
data. However, we have manipulated the path coeffi-
cients to make the standard deviation of m, twice as
large in the lower model. Any positive value for w, ,,
the variance of m;, can be accommodated without
affecting the overall fit of the model by simply ad-
justing the values of the path coefficients in the
model. If some additional constraint is not placed on
the values of these coefficients, then infinitely many
sets of values will all reproduce the data equally well,
and the parameter estimates will not be identified.

For exactly the same reason that we are able to set
the variance of m, to any positive value we please, we
also have the option of fixing the value of either A, |
or A,; to any value we please. Suppose one path
leading from m, is fixed. For example, suppose a ULI
constraint is applied to the path coefficient A, ;, thus
fixing it at 1.0, and now allowing it to be manipulated.
What effects will this have? We can describe several.
The model coefficients connected to m, will now be
identified. The model will still fit exactly as well as it
did before, as long as other model parameters are
varied to compensate for the change in X\, ;. Because
Ay was changed from .6 to 1.0, the variance of 7,
will now be modified, and identified at a value (.36 in
this case, corresponding to a change in the standard
deviation from 1 to .6) that, in general, will not be
some convenient, simple number (like 1.0).

This brief example typifies the way ULI constraints
are supposed to work in practice. Let us summarize
these properties.

1. When a ULI constraint is applied to a parameter,
the primary goal is simply to establish identifica-
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2.0

Figure 2. Doubling the standard deviation of a latent variable, and compensating by halving
model parameters. Latent variables are shown in ovals, and observed variables are shown in
rectangles. Standard LISREL notation is used. In the lower diagram, all paths leading to 1,
have been doubled, and the effect compensated for by halving all paths leading from 7,. All

values arriving at ¥, through Y, remain unchanged.

tion, and the precise value that the parameter is
fixed to will not affect the fit of the model. Spe-
cifically, one could use the value 2.0 instead of 1.0,
and the test statistic for the model would remain
the same, because the fit of the model is invariant
under change of scale of its latent variables.

. The particular manifest variable chosen for the
ULI constraint for any latent variable should not

affect model fit. In the present example, fit will be
the same if we constrain either X, | or \, ; (but not
both).

. Path coefficients leading from a latent variable

have the same relative magnitude regardless of the
fixed value used in a ULIL Their absolute magni-
tude will go up or down depending on the fixed
value used in the ULL Thus, for example, if one
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changes the 1.0 to a fixed value of 2.0, all path
coefficients leading from the latent variable will
double.

4, Any multiplicative change in the ULI constraint
applied to a path coefficient will be mirrored by a
corresponding division of the standard deviation of
the latent variable the path leads from and by a
corresponding division of path coefficients leading
to the latent variable.

The above properties reflect the way ULI con-
straints are supposed to work in practice. The con-
straints are intended to be essentially arbitrary values
imposed solely to achieve identification and are not
intended to have any substantive impact on model fit
or model interpretation.

There seems to be some confusion in the literature
about the latter point. Numerous sources (e.g., Kline,
1998, p. 204) have made a statement to the effect that
a ULI constraint for the loading of a particular mani-
fest variable fixes the scale of the latent variable to be
the same as the manifest variable. This misconception
has led to the use of the term reference variable to
refer to the manifest variable with the ULI attached.
This view is wrong—if a value of unity is used, the
variance of the latent variable is fixed to the variance
of the common part of the manifest variable that has
the ULI constraint. Moreover, as we have already
seen, all other loadings emanating from the latent
variable move up or down in concert with the value
selected for the ULI constraint, and the variance of the
common part is itself determined by the choice of
variables in the measurement model. The key issue
here is that residual variance includes error variance
and unique variance, so fixing the metric of the latent
variable to an observed variable’s common variance
has dubious value.

With these goals in mind, it seems reasonable to
ask which hypotheses are invariant under choice of
ULI constraints (or equivalently, under a choice of the
scale of the latent variable) and which are not. Unless
a particular choice of constraint (or latent variable
variance) has a specific substantive meaning, a hy-
pothesis that is not invariant under a choice of con-
straints will be difficult if not impossible to interpret.

For example, is the hypothesis that A, | equals A, ,
in the model of Figure 1 invariant under a change of
scale of the latent variables? From the preceding
analysis, it would seem that the answer is yes, because
any change in the ULI constraint would be reflected
proportionally in coefficients A, ; and N, ;. The choice
of the particular value used in the identifying con-

straint has no effect on this hypothesis. Another way
of putting it is that the particular value of the variance
of m, has no effect on the truth or falsity of the hy-
pothesis. Similarly, the hypothesis that A3, and A4,
are equal is invariant under choice of the fixed value
used in an identifying constraint on the variance of m,.
We have established there are hypotheses about the
model coefficients that are invariant under the choice
of value we fix latent variable variances to, so long as
the constraints are only to achieve identification. It
seems reasonable to suggest that, if a hypothesis is
invariant under the choice of the fixed value used in
the identifying constraint, then the hypothesis might
be considered meaningful when the value of 1.0 typi-
cally used in the ULI is used.

Some hypotheses are not invariant under a choice
of the fixed value used in the identifying constraint.
For example, in connection with the model in Figure
1, consider the hypothesis

HO: )\2‘1 = )\4,2.

This hypothesis is not invariant under the choice of
fixed value used in the identifying constraint on A4 ;.
Doubling the fixed value of \, | doubles the value of
A, while leaving A,, unchanged. In this case, the
hypothesis is not invariant under change of scale of
the latent variables.

In analyzing whether a ULI constraint (or set of
constraints) is truly arbitrary, we should ask the fol-
lowing questions:

1. Does the goodness-of-fit statistic remain invariant
under the choice of fixed value used in the identi-
fying constraint? That is, if we change the 1.0 to
some other number, does the value remain con-
stant?

2. Does the goodness-of-fit statistic remain invariant
under the choice of which manifest variable is the
reference variable?

3. Do the relative sizes of path coefficients leading to
the latent variable remain invariant under the
choice of the fixed value used in the identifying
constraint?

4. Do the relative sizes of path coefficients leading
from the latent variable remain invariant under the
choice of the numerical value used in the identi-
fying constraint?

5. Does the choice of manifest variable to which the
ULI constraint is applied affect the fit of the
model?
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In the next section, we develop some algebraic
tools to enhance our understanding of how ULI con-
straints operate.

Algebraic Tools for Analyzing
Model Constraints

In this section, we develop some important tools for
studying simple structural models and understanding
how ULI constraints operate. Recall the upper mea-
surement model in Figure 1. Suppose we were fitting
a model such as this in isolation to a set of data. That
is, suppose we were simply fitting a confirmatory fac-
tor model with two correlated factors, each loading on
only two variables. This model is shown in Figure 3.

The model, as shown, has two ULI constraints, as
A;, and A, have been assigned fixed values of 1.
Using the pipeline metaphor, it is easy to see that
without these constraints, the model would not be
identified. For example, if A, ; were not fixed, one
could quadruple the variance of m; and compensate
for it by halving ®; 5, Ay ;, and X, ;.

0, 0,,
€ 73
\ \
Y, Y

One can, alternatively, identify the model by leav-
ing A and A;, free and instead constraining the
variances of 1; and r), directly. All structural model-
ing programs allow the variances of exogenous latent
variables to be fixed, but only a few allow the vari-
ances of endogenous latent variables to be fixed di-
rectly and conveniently. Thus, although we have the
option of setting A; ; or o, ; to 1.0 to identify the model
when it is examined in isolation, it is much more
common to see A, ; and A5, fixed at 1.0 when the
measurement model with endogenous factors is em-
bedded in a LISREL model.

It is possible, with a simple model such as the one
in Figure 3, to establish algebraically whether the
model is identified and which population covariance
matrices can fit the model. For example, in this case
we establish, using algebraic analysis, that (a) the
model is identified, and (b) only covariance matrices
for which 05 ,0,, = 03,0, will fit the model.

Item (b) above is a constraint on the elements o ; of
the population covariance matrix 2, that is implied by

8,5 6,4

€ €,
A

Y, Y,

Figure 3. Confirmatory factor model with two correlated factors and two unit loading
identification constraints to establish identification. Latent variables are shown in ovals, and
observed variables are shown in rectangles. Standard LISREL notation is used. Paths without
explicit coefficients have fixed values of 1. “=1" means that a parameter has been assigned

a fixed value of 1 to establish identification.
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the model. It is an equation that can be reexpressed in
the general form f(2) = 0, where f(3) represents a
scalar function of the elements of the covariance ma-
trix, by simply moving all nonzero elements to the
left. We refer to these constraints as 3 constraints.
Different models, as is shown below, can have iden-
tical 2 constraints, which means that they are empiri-
cally indistinguishable. We refer to models with iden-
tical 2 constraints as 3 equivalent.

Deriving the above 3 constraints for the model of
Figure 3 is a tedious exercise in basic algebra. The
major steps are as follows:

1. Create the LISREL model matrices, with symbolic
model parameters inserted in appropriate positions.

2. Compute a symbolic form for 2, using the LISREL
model equations, so that each nonduplicated ele-
ment of 2 is expressed as a function of model
parameters.

3. If ¥ is of order p x p, it will have ¢ = p(p + 1)/2
nonduplicated elements. Set these elements equal
to the symbolic formulas generated in Step 2
above. This will create a set of g symbolic equa-
tions. In what follows, we refer to these as the
model equations.

4. To generate the implied constraints on 2, eliminate
the free parameters from the system of equations.

5. In order for the population covariance matrix % to
fit the model perfectly, the 3, constraints must be
satisfied. To determine whether the model is iden-
tified, solve for the augmented system of equations
represented by the model equations and the X con-
straint equations. If the model is identified, each
parameter can be expressed as a function of the
elements of 3.

To demonstrate how this process works, I begin
with a very simple example. Suppose we have three
data points, g, b, and ¢, and we have a “model” that
says these data points may be explained in terms of
two parameters, x and y. There are three model equa-
tions, and they are

x+y=a, x—-y=b, 2x=c.

Not all data sets a,b,c can fit this model. Only certain
data sets that obey a certain restriction can. To dis-
cover what the restriction is, and thereby discover
what the model actvally implies about the data, we
systematically eliminate the model parameters from
the above set of equations.

We begin by eliminating x, by solving the third
equation and substituting the result (i.e., x = ¢/2) in the

first two equations. We are now left with only two
equations and one parameter, that is,

¢/2-y=b, c/2+y=a.

Adding these two equations together, we now elimi-
nate y and arrive at the constraint equation,

c=a+b.

Only data sets satisfying this equation can fit our
model.

Adding this equation to our original three model
equations, we now have a set of equations that ex-
presses the relationship between parameters and data,
given that the model fits the data. We solve this set of
equations to see if it has a unique solution. If it does,
the model is identified.

Substituting a + b for ¢ in our original model equa-
tions, it is rather easy to deduce that the unique solu-
tion is ’
a+b c a-b
2 T2 YT

X =

The identical steps are taken to solve the confirmatory
factor model in Figure 3, but the algebra is more
complicated. For all but the simplest structural equa-
tion models, these steps are best accomplished by use
of special symbolic algebra software such as Math-
ematica or Maple. However, as I demonstrate in a
subsequent section, one may in practice substitute a
simple numerical procedure for algebraic analysis and
can almost arrive at the correct conclusions.

For Figure 3 the LISREL model equation is sim-
plified to

Eyy =A QA+ 0. (D
with
1 0 W ®
A= ,Q=|: 1.1 2.1]’
Ay O Wy Wy
0 1
| 0 Ay
~6,,0 0 0
0 6,,0 O
=10 0 6,0 | @

Recall that £} is the covariance matrix for the endog-
enous latent variables 1, and m,. This matrix is not
generally defined in the full LISREL model, because
in that context the variances and covariances of en-
dogenous latent variables are fully determined by the
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paths leading to them. It is required here because we
have temporarily removed the measurement model
from the larger model. Computing Equation 1, we
find that the model equations (with redundant ele-
ments above the diagonal not shown) are

=8+,
01 =M 0 4,
Oy=05,+ )\5,1‘91,1,
03,1 =0y g,

O35 =Ny 00, ,
O33=0;33+ w5,
O41 = N0,

Ou2 =Ny M40,
Ou3= Ny o005,
O44=044+ )\3,2‘”2,2-

There are 10 equations in nine unknowns. If we suc-
cessively eliminate the nine unknowns, following the
same technique used in the preceding three-parameter
example, we end up with a single equation,

031042 =0370,,- 3)

This equation is the 2 constraint for the model whose
model matrices are in Equation 2. Any covariance
matrix satisfying that constraint will fit the model
perfectly. (Note that some covariances matrices satis-
fying Equation 3 may yield improper parameter val-
ues—e.g., a negative value for 8, ;.)

Examination of a model’s 3 constraints can reveal
interesting aspects of the model. For example, we see
that the variances of the four observed variables are
not present in the 2, constraint for this model, and all
subscript values occur equally often on both sides of
the constraint equation. This implies that any change
of scale of the four observed variables cannot affect
whether the model fits 2, and so in this case an
equivalent constraint is p; \p,, = p3,ps; = 0. This
equation has an interesting form. It is the difference of
two products of correlations, each of which involves
the same four variables but in different permutations.
Spearman (1904) showed that all % constraints for an
unrestricted single factor model could be expressed in
this form. He called such a constraint a tetrad equa-
tion and the left side of the equation a tetrad differ-
ence. Early attempts at statistical testing for the single
common factor model were based on examining the
tetrad differences and determining whether they de-
parted significantly from zero. Spearman (1927) dis-
cussed this approach and gave several formulas for
the approximate standard error of a tetrad difference.
More recently, interest in tetrad equations has been

revived, both in the confirmatory testing of measure-
ment models (Bollen & Ting, 1993, 1998, 2000) and
in the development of computer algorithms to uncover
causal structure (Glymour, Scheines, Spirtes, & Kelly,
1987). As we see below, not all 3 constraints are
tetrad difference equations.

Adding Equation 3 to the original system, one can
show that, if the data fit the model, and certain de-
generate conditions (e.g., o, = 0) do not hold, then
closed form solutions for all model parameters are
available. For example,

04
Np="",
O30

042

2,1~ .
T4

Suppose we perform tlie identical analysis on a
slightly different version of the model in Figure 3. In
this version, we remove the restrictions on \, | and
A3, and leave them as free parameters to be esti-
mated. Instead, we identify the variances of ), and m,
directly by the restrictions w; ; = 1 and w,, = 1.

The revised model has the following model matri-
ces:

A, O 1 oy,
O ST S P T
0 Ay,
0 Ay
(6,0 0 0
0 6,,0 0
%=0 o 055 0
[0 0 0 6,,

These matrices produce a different set of model equa-
tions from the first version of the model, but after
eliminating the unknown parameters as before, we
find the 3 constraint for this model is the same as
Equation 3. On the other hand, when we add this
constraint to the model equations and solve for the
model parameters, we obtain different solutions for
some model parameters. For example,

1021942

)\2,1 = 0‘4_1_’ (5)
/04,2043

)\4,2 = Osz . (6)
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These results imply that any data fitting the “ULI
constraint version” of the model will fit the “unit vari-
ances” version, but the parameter values will in gen-
eral be different. Applying a ULI constraint for each
factor does not usually fix the variance of that factor
to 1. Rather, it fixes it to a value that is essentially
arbitrary. The parameters common to both models
will generally be different, because the second version
of the model fixes the factor variances to 1, whereas
“the first version usually does not.

The two versions of the model in Figure 3 that are
represented by the model matrices in Equations 2 and
4 represent the most commonly used method for iden-
tifying the factor variances in a confirmatory factor
model. However, they are not the ways to accomplish
this, and there are other models that are 3, equivalent
and are also fully identified. We return to this fact
later in the next section.

Interaction Between ULI Constraints and
Equality Constraints

In structural equation modeling, a hypothesis of
equality of path coefficients is usually tested with a
chi-square difference test. Unfortunately, some chi-
square difference tests do not perform in the intended
manner—they are compromised by a phenomenon I
call constraint interaction. To examine constraint in-
teraction in a simple context, suppose one wished to
test the hypothesis that N, , and A, , are equal in the
simple factor model of Figure 3. The difference test
would normally proceed by first fitting a version of
this model with the two loadings constrained to be
equal and then fitting the model without the equality
constraint. The difference between the two chi-square
statistics is a chi-square with 1 degree of freedom.

The precise parameterization of the constrained
version of the model depends on how one chooses to
identify the variances of the latent variables. The stan-
dard approach uses ULI constraints on A, ; and A,
and replaces A4, with X, | in the model equations. An
alternative approach is to constrain w; ; and w53 to
unity, while still replacing A4, with X, ;. This seems
simple enough, and one might expect these two mod-
els to fit a covariance matrix equally well. However,
they do not! If we pursue the steps illustrated in the
previous section, we discover these two models have
different 2 constraints.

The situation is summarized in Table 1, which
presents the 2, constraint equations corresponding to
each degree of freedom for the four models. (For sim-

plicity of exposition, I give the most general reduced
form of the 2, constraint equations that do not assume
any elements of 3, are zero. It is assumed that denomi-
nators of the constraint equations are nonzero.) Com-
paring the constraint equations for the 2nd degree of
freedom for the models where N\, | and A,, are re-
quired to be equal, it becomes clear that these two
models are not 2 equivalent, because the constraints
are not the same. The % constraints for the 2nd degree
of freedom differ depending on whether variances are
identified by (a) using ULI constraints on A, ; and A5 ,
or (b) fixing the variances of m; and ), at unity. To
demonstrate that the versions of the model with A, ,
= N4 are actually different, we can use the 3, con-
straint equations in columns 3 and 5 of Table 1 to
construct a population covariance matrix 2 that fits
the model with ULI constraints perfectly but does not
fit the model with unit variances perfectly. For ex-
ample, consider the following:

Y, Y, Y; Y,
4

s=| 09 4
08 0.5 1

0.5 03125 03 1

The reader may verify, using structural equation
modeling software, that this matrix perfectly fits the
following LISREL model using ULI constraints:

vohd Joel
2,1 2.1 2,2
0 1
U
76,0 0 0
0 6,,0 0

%=10 o 6,0 | )
[0 0 0 6,

The reader may also verify that the above covariance
matrix does not perfectly fit the corresponding model
with unit variance latent variables:

A= [N, O ,Q:[l wz,l]’
Ay O Wy 1
0 A
._.O )\2,1
6,0 0 0
0 6,,0 0
=10 0 6,0 ®
0 0 0 o,
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Table 1

3, Constraints for Four Confirmatory Factor Models

ULI constraints

Unit variance constraints

daf Unrestricted Ny = Ao

Unrestricted Ay = Ay,

1 03,04, = 03504 03,04, = 03,04,

2 4.1 U322

03,1042 = 03204, 031042 = 03204,

T4 = 032
. AL

Note. The table presents 3 constraint equations for four variations of a confirmatory factor model with
four observed variables and two correlated factors. 3, constraints are equations that the elements of X
must satisfy for a model to fit the data perfectly. There is one constraint equation for each degree of
freedom in the model. The two unrestricted models presented here have no equality restrictions on the
factor loadings and use either ULI or unit variance constraints to identify latent variable variances. The
other two models restrict A,, and A4, to be equal and use either ULI or unit variance constraints to
identify latent variable variances. ULT = unit loading identification.

We can, just as easily, construct a covariance ma-
trix that fits the model matrices of Equation 8§ but not
those of Equation 7. The fact that two methods of
identifying the variances of M, and m, with this model
produce empirically nonequivalent models when fac-
tor loadings are constrained to be equal was noticed,
and commented on, by O’Brien and Reilly (1995).
However, their article, an important conceptual con-
tribution, did not carry through its algebraic analysis
to the point where all implied constraints were ex-
pressed as X constraints, that is, equations expressed
solely in terms of the elements of 3. When models are
reexpressed in terms of 2 constraints, it is much easier
to see why they are not empirically equivalent, that is,
exactly how and why a given X may fit one model and
not another.

We have seen that two seemingly equivalent meth-
ods for identifying factor variances are not always
equivalent. Without the equality constraint A, , =
A, - the two methods for fixing variances are equiva-
lent. When this constraint is added, the two methods
yield models that are not 3 equivalent. What this
means, in turn, is that a chi-square difference test of
the hypothesis that X, | = \,, will produce different
results, depending on whether the model is parameter-
ized with ULI constraints or with standardized (unit
variance) latent variables. Before discussing this phe-
nomenon in more detail, we should digress briefly to
note an important and apparently unnoticed fact that
helps explain the source of the nonequivalency. When
the model includes the constraint that X, ; = N 5.
only one ULI constraint (or, alternatively, unit vari-
ance constraint) is necessary to establish identifica-
tion. For example, consider again the model of Equa-
tion 7. Although the frequently cited “rule” for
identifying variables might lead one to believe that
two ULI constraints are necessary to identify this

model, it actually will remain identified if one of the
ULI constraints is relaxed. Suppose we relax the con-
straint on A, ; and allow it to be a free parameter. In
this case, the model matrices become

A= _:1,1 8 Q= |:‘”1,1 ‘”2,1}
’ 2,1 Wy Wy
0 1
| 0 Ay,
6,0 0 0
0 6,0 O
%=10 0 0,0 [ ©
[0 0 0 6,

If we construct the model equations and eliminate the
parameters, we discover that the 3, constraint for the
model of Equation 9 is the same as Equation 3. Thus,
this model is 2. equivalent to the models of Equations
2 and 4.

This fact does not seem to have been noticed in
previous discussions of structural modeling. For this
model, unlike those examined previously, the con-
straint N\, ; = MN;, has an unintended side ef-
fect. Besides constraining the two factor loadings to
be equal, it also identifies the variance of the first
factor, m,.

We can verify this informally, using the pipeline
metaphor approach. Reexamine the model of Figure
3, and imagine that the ULI constraint on A, has
been replaced by an equality constraint, that is, A, ,
and \,, must remain equal, as in Figure 4. Imagine
further that the variances of 7, and 7, are identified at
some value and that the model fits perfectly. Now ask
the question, “Can we vary the variance of either n, or
1, and compensate for it by adjusting other model
coefficients?” First imagine that we double the stan-
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dard deviation of m;. We could try to compensate for
this by halving all coefficients attached to v, (i.e., A}
A1, and w;,). Note that halving the value of X\,
would require halving the value of A, , because of the
equality constraint. However, this cannot be done
without changing the fit of the model.

We have discovered a surprising fact. The equality
constraint on the As not only constrains them to be
equal but it also fixes the variance of m, to a particular
- value. What value? The value is essentially arbitrary,
that is, it might be described as “whatever value oc-
curs when A, is fixed as 1, and \,, and \,, are
constrained to be the same free parameter.”

A similar result holds when unit variance con-
straints instead of ULI constraints are used. With \, ,
and A, , constrained to be equal, one need only con-
strain either w, ;| or w, , to unity to identify both vari-
ances.

Consequently, once the equality constraint on the
As is in place, the unnecessary second ULI (or unit
variance) constraint actually overconstrains the model
beyond what is necessary for identification. The effect

0,, 6.,
€ )
Y, Y,

of the unnecessary additional constraint depends on
its type—adding the second ULI constraint forces par-
allel As to be equal, whereas adding a second unit
variance constraint forces the factor variances to be
standardized.

Unfortunately, the chi-square difference test for
equal As cannot be performed unless the identification
constraints are kept constant for the two tests, because
if the unnecessary identification constraint is re-
moved, the two models will have the same degrees of
freedom and will not be nested.

The results discussed in this section have several
important implications:

1. A chi-square difference test for equal factor load-
ings on different factors is not “scale-free,” that is,
it depends on the scaling of the factors involved.

2. If loadings on different factors are constrained to
be equal, then the factor variances may be identi-
fied without a ULI constraint’s being used on ev-
ery factor.

3. Conditions 1 and 2 may generalize to many situa-

93_3 64.4

g, €,
\

Y, Y,

Figure 4. A confirmatory factor model with one unit loading identification constraint and
one equality constraint, empirically equivalent to the model in Figure 3. Latent variables are
shown in ovals, and observed variables are shown in rectangles. Standard LISREL notation
is used. Paths without explicit coefficients have fixed values of 1. “=1" means that a
parameter has been assigned a fixed value of 1 to establish identification.
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tions other than the simple one discussed here.
They will certainly generalize to any situation that
can be conceptualized as a factor model.

4. When the chi-square difference test is not scale
invariant, choice of a particular scale might be
based on substantive grounds. If no reasonable
substantive grounds exist, then such a test may not
be meaningful.

In the next section, we examine how the lessons
learned in the context of a simple confirmatory factor
analysis model generalize to more complex structural
equation models.

Metric-Setting Effects in the General
LISREL Model

The LISREL model includes two measurement
models that are actually confirmatory factor models
similar to the one we studied in the preceding section.
It is not surprising that the metric-setting effects we
saw in the preceding section will continue to hold if
the factor model is embedded in a structural equation
model, because the fit of the measurement model also
affects the fit of the overall model.

For example, the four-variable, two-factor model
was actually embedded in the larger model of Figure
1, so this latter model should also be sensitive to
metric-setting effects if we try to test the restricted
model that A, ; = A, ,. The model of Figure 1 corre-
sponds to the following LISREL model equations:

A rl]q) (6,10 [81,10 ]
X_va,l B N 82,2 ’
1 0
Ay: ,F:[Vl,l]’
Ay O Y21
0 1
| 0 A4
~ (10)
- U, 0 6,,0 0 O
“lo Yrs | S 0,,0 O ’
0 0 6;,0
0 0 0 04,
B [0 0]
__BZ,I 0f

This model is parameterized with ULI constraints. We
can fit this model, with or without the equality con-
straint A, ; = A, ,, using any structural equation mod-

eling program. An alternative parameterization does
not use ULI constraints and substitutes the restrictions
that £, m,, and 7, all have unit variances. It uses the
following model equations:

Ao v1,1:| ®=[1],0 =|:8|,1O :|
* lvaa ) T 0 3,1

A= —)\1,1 0 I,_I:Y],lj|
Y Ay 0 ’ Yol

0 )\3’2
_0 )\4,2
(1)
\P:[\uuo ] _ 61’10 0 0
0 412‘2 > Te 0 (')2’20 0 ’
0 0 65,0
0 0 0 8,
0 O
B‘[Bz,l 0]'

The model implied by these equations must be solved
subject to the nonlinear constraints that imply unit
variances for ), and m,. With the aid of Mathematica,
one may compute these constraints as

2 2
Wy =0, =Y b Y =1
2 2
Wy, =0, = BoaYiaYa b +¥d +

Boalviava b+ Bz,l(V%,ld)l,l +y )]
iy, =1 (12)

Table 2 presents X constraint equations' for the
four models with ULI constraints and unit variance
constraints, with and without the restriction that A,
= A4, The table shows that, without the equality
constraint on A, ; and A, ,, both versions of the model
have six %, constraints corresponding to 6 degrees of
freedom, and the constraint equations are the same.
Consequently, the two versions of the model are em-
pirically equivalent.

Table 2 also demonstrates that, when we constrain
A, and A4, to be equal, the models are no longer

' The actual list of 3 constraint equations produced di-
rectly by elimination is quite long. For brevity and simplic-
ity of exposition, I give the most general nonredundant re-
duced form of the % constraint equations that guarantees
perfect model fit without requiring any element of 3, to be
precisely zero. This reduced equation set does not subsume
certain covariance matrices (with precisely zero elements)
that also fit the model.
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Table 2
S, Constraints for Four Confirmatory Factor Models

STEIGER

ULI constraints

Unit variance constraints

df Unrestricted Ny = Ao Unrestricted Ny = Ao
1 - 04,106,3 - 04,1963 - 041063 - 041963
' Oea ’ Te,4 ’ 6.4 h o4
5 - U4,296,3 - 04,2063 - 042063 - 042063
' Oe,a ’ T4 ’ Oe,a h Oea
3 - 05406, - 05406,1 s = 05,496,1 - U5406,1
' T6.4 - T64 ’ O6.4 ’ O6.4
4 e = 05406, - 054062 - 054962 - 05406,
’ 6.4 ’ 64 - Oga - g4
5 - 054063 - 054063 - 05,4063 - 054063
v Te.4 ’ T6.4 " Og.4 o T64a
6 o= 04206,1 - 042061 o= 04206,1 - 042061
’ T4 ’ 04 ’ 04,1 ’ 04,1
7 0415032 041=<&>012
8 3, . Tas) >

Note. The table presents % constraint equations for four variations of a structural equation model shown
in Figure 1. 3 constraints are equations that the elements of 3 must satisfy for a model to fit the data
perfectly. There is one constraint equation for each degree of freedom in the model. The two unrestricted
models presented here have no equality restrictions on the factor loadings and use either ULI or unit
variance constraints to identify latent variable variances. The other two models restrict X, , and A, to
be equal and use either ULI or unit variance constraints to identify latent variable variances. ULI = unit

loading identification.

empirically equivalent, because the 2 constraints cor-
responding to the 7th degree of freedom are different.
This difference occurs because, as in the case with
the simple confirmatory factor model, only one of
the ULI or unit variance constraints is necessary to
establish identification. With the equality constraint
on the As in place, the superfluous ULI (or unit vari-
ance constraint) now functions to constrain the model
over and above that which is required for identifica-
tion.

We have seen how, when a measurement model
with equality constraints on loadings for different fac-
tors is embedded in a structural equation model, there
can be important consequences: (a) A chi-square dif-
ference test for equal loadings on different factors
requires constraints on variances of both factors; b)
the choice of a method for fixing the variance of latent
variables will change the model that is implied; and
(¢) consequently, the difference test is not invariant
under changes of the scale of the latent variables, and
any choice of scaling method must be justified on a
substantive basis.

The astute reader may, at this point, be asking the
obvious question, “Because the relative size of factor
loadings is often of no great interest in structural

equation modeling, is this phenomenon worthy of
much consideration?” It is therefore important to rec-
ognize that the problem described above may gener-
alize to other situations.

For example, reconsider the model of Figure 1.
Suppose one wished to test whether the direct effect
of £, on m, is equal to its effect on m,, namely, that
¥, and vy, are equal. The traditional approach
would be to first fit the model without the equality
constraint on the y coefficients and then fit it with the
constraint. The difference between the two chi-square
test statistics would be used to perform a chi-square
difference test.

However, algebraic analysis similar to that per-
formed above establishes that a model with an equal-
ity constraint on <y, ; and -y, and two identification
constraints (so that a chi-square difference test can be
performed) will have a different X constraint for one
of its degrees of freedom, depending on whether ULI
constraints or unit variance constraints are used to
identify the variances of m, and .

Equation 13 gives a covariance matrix that per-
fectly fits the model of Figure 1 with v, ; and v,
constrained to be equal and the ULI constraints re-
placed by unit variance constraints:
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Y, Y, Y,
0.400000
0.090000  0.400000
S =|0.050000 0.060000 0.400000
0.060000 0.072000  0.124026
0.058333  0.070000 0.077778
10.050000  0.060000  0.066667

Computer software—for example, Mx (Neale,
2002; Neale, Boker, Xie, & Maes, 1999), RAMONA
(part of Systat; Browne & Mels, 1999), or SEPATH
(part of Statistica; Steiger, 1995)—that produces a
fully standardized solution with constrained estima-
tion will generate a standardized solution that fits the
matrix in Equation 13 perfectly. It is extremely im-
portant to realize that some commercial computer
software will not necessarily find this perfect solution
for the following reasons. Recall, first, that when the
v coefficients are constrained to be equal, and two
variance constraints are used, the model is not, in
general, invariant under change of scale of its latent
variables. If these data are analyzed with a model
having ULI constraints, in general the fit will not be
perfect. This, in turn, implies that the standardized
solution produced by some programs will not be cor-
rect, nor will fit be perfect. For example, versions of
LISREL (up to 8.3, at least) produce a standardized
solution by first finding the unstandardized solution
with ULI constraints and then transforming it to stan-
dardized form. This procedure assumes, implicitly, that
the ULI constraints function only to establish identi-
fication, but when the -y coefficients are constrained to
be equal, the ULI constraints do not function as
planned. Because fit is not perfect with ULI con-
straints, the resulting standardized solution will also
not have perfect fit. In practice, this means that, when
constraints interact, software that produces a stan-
dardized solution without using constrained estima-
tion almost always will have the wrong chi-square
value.

So far, our discussions of constraint interaction and
metric-setting effects have relied heavily on two tools:
(a) use of the pipeline metaphor for detection and (b)
algebraic analysis of 3 constraints for verification and
quantification. These methods have some drawbacks.
The pipeline metaphor is simple but requires practice
and careful use, and algebraic analysis of X con-
straints requires (except for the simplest models) fa-
cility with the use of a symbolic algebra program such

Y, X X
(13)
0.400000
0.093333  0.400000
0.080000  0.090000  0.400000

as Mathematica. Unfortunately, if the model is rea-
sonably complicated, symbolic algebra programs such
as Mathematica may not solve for model equations in
a reasonable time frame, so simpler methods are de-
sirable. In the next section, a simple numerical
method that will uncover the vast majority of model-
ing situations in which constraint interactions might
be a problem is discussed.

A Simple Numerical Approach to Detecting
Constraint Interaction

Constraint interaction, when it occurs, has an im-
portant implication—equality of two coefficients will
not be invariant under changes of scale of the latent
variables. Whether a hypothesis test “makes sense”
under such circumstances is an issue to be addressed
in a subsequent section. Here, we concentrate on a
simple approach to detecting constraint interaction in
practice.

Recall that, when constraints interact, a model that
fits perfectly under one parameterization will not fit
perfectly under another. This is because the model
itself is not invariant under changes of scale of the
latent variables. One way of testing whether a model
is sensitive to the scale of the latent variables is to test
whether the fit of the model is sensitive to the value
used in the ULI constraint. Generally, of course, this
value is set equal to 1. For models that are invariant
under changes of scale of the latent variables, the
magnitude of this value may be varied to any nonzero
number without affecting model fit. However, for
models that are not invariant under changes of scale,
varying the magnitude of the value will affect model
fit.

Consequently, a simple way of detecting constraint
interaction is the following: (a) For the model with
equality constraints, compute a chi-square fit statistic
with the standard ULI constraints in place; (b) then,
alter the model so that one of these constraints is
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altered, say, to a value of 2 instead of 1; (c) recompute
the chi-square statistics; and (d) if the two chi-square
statistics are not identical within rounding error, and
convergence has occurred in each case, then the
model is not invariant under changes of scale of the
latent variables. As an example, consider the model of
Figure 1, with ULI constraints, and with A, | and A4,
constrained to be equal. This model has these LISREL
model matrices:

A 'l}q) (6,10 [81‘10 ]
x__vz,] Il R R ) 8, |
1 0
Ay: ,Fz[yl,l]’
Ay O Y2.1
0 1
U U
_ (14)
v Py, 0 6,,0 0 O
~lo Yol <710 0,,0 0 ’
0 0 0530
0 0 0 6,4,
B [0 O]
T LBy OF

Suppose we fit the covariance matrix of Equation 15
to the model of Equation 14.

'y, v, Y. Y, X X, 1
1.00
0.40 1.00
S =(0.20 0.10 1.00 . (15)
0.20 0.10 0.20 1.00

0.20 0.10 0.20 0.20 1.00
10.10 0.05 0.10 0.10 0.30 1.00]

Using a “dummy” sample size of 100, we find that,
fitting this model with LISREL or any other covari-
ance structure program, the maximum-likelihood chi-
square statistic has a value of 0.86 when the ULI
constraints are their normal value of 1.0. Now, sup-
pose we alter the model so that the ULI constrained
value on A, is changed from 1 to 2. Fitting this
model to the data, we obtain a chi-square statistic of 0.
The modified model fits perfectly! This verifies that
the model is not invariant under changes of scale.

An Example From the LISREL Manual

One of the standard example models given in LIS-
REL and other structural equation modeling computer

manuals (Joreskog & Sorbom, 1984, 1989) is the mul-
tiple indicators multiple causes (MIMIC) model of
Duncan, Haller, and Portes (1968). Figure 5 is a path
diagram for this model. This path diagram is equiva-
lent to one given in the LISREL 7 manual (Jéreskog
& Sorbom, 1989, p. 146). Joreskog and Sérbom ana-
lyzed the algebraic properties of the model very ex-
tensively to show that the parameters are in fact iden-
tified. For our purposes, the key aspects of the
diagram, and of the Joreskog and Sérbom (1989)
analysis, are as follows: (a) There are reciprocal paths
with coefficients called ,, and 3,, by Joreskog and
Sérbom from variable m, to m,, and vice versa, and
these are constrained to be equal; and (b) there are
ULI constraints on the paths from 7, to ¥, and from
M, to Y,, ostensibly in order to identify the variances
of m, and m,.

Joreskog and Sorbom (1989) performed a
chi-square difference test of the hypothesis that
B, = B, Inspection of the model in Figure 5 us-
ing the techniques described above reveals that
when the constraint B, , = B, , is active, only one of
the two ULI constraints is necessary to produce
model identification. Adding a second ULI con-
straint overconstrains the model and, rather than leav-
ing the discrepancy function unchanged, actually in-
creases it. Consequently, the chi-square differ-
ence statistic calculated by Joreskog and Sérbom is
not invariant under change of scale of the latent vari-
ables.

Joreskog and Sorbom (1989), though mindful (e.g.,
Cudeck, 1989) that treating the correlation matrix as if
it were a covariance matrix can lead to erroneous
estimates for parameter standard errors, analyzed the
correlation matrix from Duncan et al. (1968) as if it
were a covariance matrix for illustrative purposes.
When the model of Figure 5 is fit to the correlation
matrix, one obtains a chi-square value of 26.90, with
17 degrees of freedom. The parameter estimate for
N\, is 1.0610. When we change the value of the fixed
coefficient on the path from 7, to ¥, from 1.0 to 2.0
and fit the revised model to the data, we note two
anomalies: (a) The chi-square value changes to 29.09,
and (b) the value of the parameter estimate for A, ,
does not double. It changes from 1.0610 to 2.1066. If
ULI constraints were being applied in the traditional
fashion and were serving only to establish identifica-
tion, the chi-square value would not change, and the
value of the parameter estimate would double. Con-
sequently, whether 3, | and B, , are equal is sensitive
to the scale of m; and m,.
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Figure 5. A recursive structural equation model, after Duncan, Haller, and Portes (1968).
B, and f, , are constrained to be equal. Latent variables are shown in ovals, and observed
variables are shown in rectangles. Standard LISREL notation is used. Paths without explicit
coefficients have fixed values of 1. “=1" means that a parameter has been assigned a fixed

value of 1 to establish identification.

Standardized Models as an Optimal
Arbitrary Choice

In the preceding section, we learned that the ques-
tion of whether B, and B,, are equal is not scale
invariant. One potential solution to the problem is to
require the variances of m, and m, to be equal by
testing a standardized model, that is, one in which all
latent variables, both endogenous and exogenous,
have unit variance. In this case, the null hypothesis is
rephrased as one about the equality of standardized
coefficients. In such a case, the standardization be-
comes part of the model.

The technique for obtaining standardized estimates
without ULI constraints was discussed briefly by
Mels (1989), and a general discussion of the statistical
theory and methodology for fitting covariance struc-

ture models with nonlinear constraints was given by
Browne and DuToit (1992). Because the variances of
v, and 7, are (nonlinear) functions of the model pa-
rameters, they can be fixed at 1.0 by estimating the
model coefficients, subject to a (usually complicated)
nonlinear constraint. One such constraint is required
for each variance. Each constraint adds a degree of
freedom to the model. In effect, one surrenders the
right to “fix the metric” of the latent variables to that
of the common parts of a particular manifest variable
‘and instead adopts the convention of fixing the vari-
ance of the latent variable to 1.

Several software packages implement estimation of
structural equation models subject to constraints.
Some of the more convenient options are discussed in
the next section.

It must be emphasized that, for the above solution
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to work, standardized estimates must be generated
using a constrained estimation technique. Unfortu-
nately, many software packages produce “standard-
ized” models by a two-step procedure that involves
(a) calculation of the unstandardized model, using
ULI constraints to establish identification of the vari-
ances of m; and m,, and (b) use of a simple algebraic
transformation to compute the standardized estimates
after the fact. This approach will not reliably solve our
problem in the current situation. ULI constraints do
not usually lead to unit variances for v, and m,. Be-
cause the fit of the model is not invariant under
change of scale, ULI constraints do not produce per-
fect fit when constrained variances do. Transforming
the solution from unstandardized to standardized after
the iterative fitting procedure doesn’t change the fit.
Tronically, then, one can have data that perfectly fit a
standardized model, and software programs using the
two-step standardized procedure will not detect the
appropriate solution.

Software Implementation

In situations in which ULI constraints create prob-
lems, several software packages allow them to be
eliminated by using constrained estimation to produce
a standardized solution. The ease with which this can
be done varies substantially across programs. Some
programs, such as RAMONA and SEPATH, allow the
variances of latent variables to be constrained auto-
matically and directly as part of the language speci-
fication. These programs allow ULI constraints to be
eliminated with virtually no effort. Mx, a freeware
program by Neale, Boker, Xie, and Maes (1999), al-
lows specification of complex constraints not only on
parameters but on complex functions of model matri-
ces. As a result, it is relatively easy for the experi-
enced Mx user to produce a standardized solution
using constrained estimation as discussed in Section
2.7 of the Mx manual. LISREL, while it allows non-
linear constraints on parameters, does not include the
extensive matrix calculation facilities in Mx. Conse-
quently, the LISREL user must be sophisticated
enough to be able to write an expression for the vari-
ance of each endogenous latent variable as a scalar
function of model parameters. Often, this will be
nearly impossible without the use of symbolic algebra
manipulation software and substantial expertise in sta-
tistical theory. On the other hand, it is relatively easy
to use a program like Mathematica to derive these
constraint equations and then transfer them to the LIS-
REL command language.

Discussion and Recommendations

In this article, we have explored the use of ULI
constraints and “reference variables,” and we have
discovered that their use is not quite as straightfor-
ward as represented in a number of textbooks and
program manuals. Some of the key points that were
discussed are as follows:

1. ULI constraints, though simple and convenient, are
not the only method available for fixing the vari-
ance of latent variables. Several modern software
packages using constrained estimation allow the
variances of latent variables to be constrained di-
rectly.

2. In the majority of structural equation models, ULI
constraints have no impact on overall model fit,
and their only real purpose is to establish identifi-
cation. .

3. When path coefficients attached to two or more
different latent variables are constrained to be
equal (as part of a hypothesis test for equality),
constraining the variance of one of the latent vari-
ables will usually constrain the variance of the oth-
ers, because of a phenomenon I call constraint
interaction. In such a situation, ULI constraints (or
other variance-fixing devices) are no longer re-
quired on all latent variables. If they are used, then
(a) the model fit will no longer be invariant under
changes of scale of the latent variables, and (b) the
hypothesis of equality of constraints will not be
invariant under a choice of metric for the latent
variables. This creates a dilemma for the practi-
tioner. Equality constraints and variance con-
straints are necessary to perform the chi-square
difference test, but unless there are substantive
grounds for choosing a metric for the latent vari-
ables, the test would be of questionable validity.

4. In cases in which standardized latent variables can
be justified, constrained estimation techniques can
be used to test the hypothesis of equal standardized
coefficients with a chi-square difference test. One
cannot reliably use traditional two-step standard-
ized solutions to test a hypothesis of equal stan-
dardized coefficients.

5. When constraint interaction occurs, and ULI con-
straints are used incorrectly, the outcome of the
resulting significance test is, in a sense, an accident
of fate.

Constraint interaction can be detected by following
some simple procedures designed to detect whether
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the fit of a particular structural equation model is not
invariant under changes of scale of its latent variables.
First, for each identification constraint, vary the value
of the fixed loading from the standard value of 1 to
some other value, say 2. Next, check whether (a) the
value of the chi-square statistic remains the same and
(b) the relative sizes of the constrained loading and its
companion loadings for the other indicators of the
latent variable remain equal. If either check fails, then
the “identification constraint” is not simply establish-
ing identification—it is constraining the fit of the
model to the data in some other way. Consequently,
the fit of the model will not be invariant under
changes of scale of the latent variables.

Once it is determined that fit of a model is not
invariant under changes of scale of its latent variables,
the natural question to ask is whether the model can
meaningfully be tested. In situations in which stan-
dardized model coefficients can be compared in a
meaningful way, the solution to this problem is to
work with models in which the latent variables are
constrained to have unit variance. Such models are
not always reasonable, especially when more than one
sample is being tested. However, in many circum-
stances, standardized coefficients are of interest, and
their use circumvents the problems discussed here,
provided they are produced by a constrained estima-
tion approach. Some popular structural equation mod-
eling programs are not designed to allow convenient
generation of standardized estimates via nonlinear
constraints. The freeware package Mx can perform
the calculations with minimal programming, and the
commercial programs RAMONA and SEPATH allow
such estimation to be performed automatically by se-
lecting a program option.
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